专题一 (直播4天) | (详情内容点击上方名称查看) 2025年1月18日-1月21日 | |
专题二 (直播4天) | (详情内容点击上方名称查看) 2025年01月04日-01月05日 2025年01月11日-01月12日 |
培训对象
电磁学、光学、材料科学、电子工程、光子学与光电子学、无线电电子学、物理学、电信技术、自动化技术、仪器仪表工业、电气工程、电力工业、计算机软件及计算机应用、工业通用技术及设备、生物医学工程、金属学等领域的研究人员、工程师、研究生、及相关行业从业者,以及对超表面技术感兴趣的专业人士和跨领域研究人员。
讲师介绍
培训大纲
智能光学计算成像技术与应用
时间 | 课程内容 |
光学计算成像导论 | 1.计算成像的概念与现状 2.生活与科研中的典型应用场景 3.光学计算成像与计算摄影 4.深度学习增强的计算成像 |
图像基本概念及计算成像理论基础 | 1.颜色和光谱,图像在程序中的表示 2.图像传感器,成像物理模型与噪声 3.其他成像元件与光波波前分析方法 4.常见图像描述方法与图像处理流程 5.图像重构理论基础 6.一般计算成像逆问题与求解方式 Ø 实例:Poisson blending of image |
机器学习及Python软件基础 | 1.机器学习基础概念 2.监督学习与无监督学习 3.常用算法简介(如线性回归、多层感知机等) 3.1 Python 编程基础 3.2 Python 环境搭建与工具介绍 3.3 基本语法与数据结构 3.4 矩阵运算库NumPy与GPU运算库Cupy 3.5 数据可视化工具( Matplotlib 等) 3.6 深度学习框架 PyTorch 与TensorFlow Ø 实践:用Numpy/cupy与matplotlib绘制分形图像 |
图像常用深度神经网络与PyTorch/TensorFlow实现 | 1.深度学习简介与神经网络基础概念 2.深度学习的基本原理与训练过程 3.常用基本深度网络模型简介 3.1全连接网络(FC) 3.2卷积神经网络(CNN) 3.3带历史记忆的网络(如RNN) 4.基于PyTorch与TensorFlow的几种神经网络构建 Ø 全连接网络 Ø 卷积神经网络 Ø U-Net Ø Res-Net Ø 实践:基本的全连接网络模型与卷积神经网络的搭建与训练 |
图像的神经网络表示与ADMM图像重构 | 1.神经表示(Neural Representations)与位置嵌入(Positional Encoding) 2.神经渲染(Neural Rendering) 3.学习式重构(Learned Reconstruction)与应用介绍 4.用ADMM算法来求解正则化逆问题 Ø 实践:用 ADMM 算法来重构图像 |
常见的计算成像应用 | 1.图像去噪与解模糊 2.空域编码-解码成像(压缩感知、单像素成像)简介 3.时域编码-解码成像(飞行时间、非视域成像)简介 4.无透镜成像 4.1无透镜成像的概念与基础 Ø 点扩散函数(PSF) 调控与无透镜成像: 散射成像实例 |
压缩感知和压缩编码成像 | 1.压缩感知与压缩成像理论 1.1基于多模光纤lantern的压缩计算成像讲解 Ø 实践:1D信号和2D图像的压缩感知重构 2.结构光照明和单像素成像理论 3.基于神经网络的单像素成像 3.1 基于神经网络的远场超分辨率鬼成像讲解 Ø 实践:基于多模光纤超快脉冲的单像素探测超快成像 |
高光谱成像 | 1.高光谱成像简介与理论知识 2.神经网络光谱成像 Ø 案例:具有高空间分辨率的宽带高光谱图像传感器(实践网络重构部分) |
微纳光学计算成像 | 1.超构表面与微纳光学增强的计算成像简介 2.超构表面与相位获取成像 Ø 实例讲解:纳米光学高质量超构透镜成像(实践图像重构部分) |
端到端光学算法联合设计 | 1.一般图像系统设计 2.端到端光学和图像处理系统设计 Ø 案例讲解:端到端的基于深度学习的散射介质散斑计算成像 Ø 综合实例讲解: 用一个纯相位镜头的灰度图像到高光谱图像(超光谱/解模糊/深度学习/点扩散函数设计/压缩成像) |
部分案例图示:
COMSOL 多物理场仿真技术与应用-光电专题(四十一期)
(一)案列应用实操教学: | ||
案例一 | 光子晶体能带分析、能谱计算、光纤模态计算、微腔腔膜求解 | |
案例二 | 类比凝聚态领域魔角石墨烯的moiré 光子晶体建模以及物理分析 | |
案例三 | 传播表面等离激元和表面等离激元光栅等 | |
案例四 | 超材料和超表面仿真设计,周期性超表面透射反射分析 | |
案例五 | 光力、光扭矩、光镊力势场计算 | |
案例六 | 波导模型(表面等离激元、石墨烯等)本征模式分析、各种类型波导传输效率求解 | |
案例七 | 光-热耦合案例 | |
案例八 | 天线模型 | |
案例九 | 二维材料如石墨烯建模 | |
案例十 | 基于微纳结构的电场增强生物探测 | |
案例十一 | 散射体的散射,吸收和消光截面的计算 | |
案例十二 | 拓扑光子学:拓扑边缘态和高阶拓扑角态应用仿真 | |
案例十三 | 二硫化钼的拉曼散射 | |
案例十四 | 磁化的等离子体、各向异性的液晶、手性介质的仿真 | |
案例十五 | 光学系统的连续谱束缚态 | |
案例十六 | 片上微纳结构拓扑优化设计(特殊情况下,利用二维系统来有效优化三维问题) | |
案例十七 | 形状优化反设计:利用形状优化设计波导带通滤波器 | |
案例十八 | 非厄米光学系统的奇异点:包括PT对称波导结构和光子晶体板系统等 | |
案例十九 | 微纳结构的非线性增强效应,以及共振模式的多极展开分析 | |
案例二十 | 学员感兴趣的其他案例 | |
(二) 软件操作系统教学: | ||
COMSOL 软件入门 | 初识COMSOL仿真——以多个具体的案例建立COMSOL仿真框架,建立COMSOL仿真思路,熟悉软件的使用方法 | |
COMSOL软件基本操作 Ø 参数,变量,探针等设置方法、几何建模 Ø 基本函数设置方法,如插值函数、解析函数、分段函数等 Ø 特殊函数的设置方法,如积分、求极值、求平均值等 Ø 高效的网格划分 | ||
前处理和后处理的技巧讲解 Ø 特殊变量的定义,如散射截面,微腔模式体积等 Ø 如何利用软件的绘图功能绘制不同类型的数据图和动画 Ø 数据和动画导出 Ø 不同类型求解器的使用场景和方法 | ||
COMSOL 软件进阶 | COMSOL中RF、波动光学模块仿真基础 Ø COMSOL中求解电磁场的步骤 Ø RF、波动光学模块的应用领域 | |
RF、波动光学模块内置方程解析推导 Ø 亥姆霍兹方程在COMSOL中的求解形式 Ø RF方程弱形式解析,以及修改方法(模拟特殊本构关系的物质) Ø 深入探索从模拟中获得的结果 (如电磁场分布、功率损耗、传输和反射、阻抗和品质因子等) | ||
边界条件和域条件的使用方法 Ø 完美磁导体和完美电导体的作用和使用场景 Ø 阻抗边界条件、过度边界条件、散射边界条件、周期性边界条件的作用 Ø 求解域条件:完美匹配层的理论基础和使用场景、 PML网格划分标准 Ø 远场域和背景场域的使用 Ø 端口使用场景和方法 Ø 波束包络物理场的使用详解 | ||
波源设置 Ø 散射边界和端口边界的使用方法和技巧(波失方向和极化方向设置、S参数、反射率和透射率的计算和提取、高阶衍射通道反射投射效率的计算) Ø 频域计算、时域计算 Ø 点源,如电偶极子和磁偶极子的使用方法 | ||
材料设置 Ø 计算模拟中各向同性,各向异性,金属介电和非线性等材料的设置 Ø 二维材料,如石墨烯、MoS2的设置 Ø 特殊本构关系材料的计算模拟(需要修改内置的弱表达式) | ||
网格设置 Ø 精确仿真电磁场所需的网格划分标准 Ø 网格的优化 Ø 案列教学 | ||
COMSOL WITH MATLAB功能简介 Ø COMSOL WITH MATLAB 进行复杂的物理场或者集合模型的建立(如超表面波前的衍射计算) Ø COMSOL WITH MATLAB 进行复杂函数的设置(如石墨烯电导函数的设置和仿真) Ø COMSOL WITH MATLAB 进行高级求解运算和后处理 Ø COMSOL WITH MATLAB求解具有色散材料的能带 |
部分案例图示:
培训特色
报名须知