打破新纪录!这个团队太值得关注了!钙钛矿领域Nature正刊+1!大子刊+5!

文摘   2024-12-27 07:55   福建  

2024年,浙江大学材料科学与工程学院在全球顶级期刊Nature/Science上以第一通讯作者单位发表论文2篇,合作发表论文2篇;在其大子刊上发表论文9篇!其中钙钛矿领域相关研究如下:

高效率的钙钛矿光伏器件中自组装空穴传输层一直依赖于有杂原子取代的不稳定的结构,限制了其器件的长期稳定性。本项研究跳出了传统分子设计框架,开发出了一种兼具效率和稳定性的新分子结构,大幅提升了钙钛矿光伏器件的使用寿命。

提出了一种开关可控的氧化锌/钙钛矿界面反应的材料设计思路,克服氧化锌/钙钛矿界面反应不可控难题,制备出高质量CsPbI3钙钛矿薄膜,实现目前最高亮度、最稳定的深红光LED。

强配位膦酸结合氢碘酸刻蚀策略实现纳米表面重构,解决量子点表面缺陷调控难题,创造了显示用纯红光LED光效和寿命纪录;提出控制纳米晶薄膜发光层的焦耳热生成和增强器件散热的协同策略,实现了近40万尼特的超高亮度纯红光LED。

提出类卤素阴离子原位处理策略,抑制离子迁移并提升LED响应速度,国际首次实现微秒响应的钙钛矿三色有源矩阵显示阵列;提出钙钛矿蓝光LED性能提升关键思路,解决了氯缺陷控制科学难题,创造了460-480 nm显示用蓝光LED效率的国际纪录。

该项研究成功开发出一类有机组分诱生高熵效应的稳定的新型有机-无机杂化钙钛矿材料,突破了无机组分诱导熵效应的局限,显著提升材料和器件稳定性,且可作为一种通用性高、容错性强的策略,在多场景下普适地提高光伏性能,提高器件良品率。

报道了一种局部空穴收集接触的新型二端硅钙叠层太阳电池的器件结构,采用空穴传输材料与钙钛矿材料一步共沉积法首次在制绒硅上实现基于无机空穴传输材料的最高效率的叠层器件。制备的单片二端晶体硅/钙钛矿叠层器件在1cm2的活性面积上实现了31.46%的认证效率。
智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、超表面光学(metaphotonics)、全息技术和量子光学等技术,推动光学成像技术的发展。以下是智能光学计算成像的一些关键进展和应用:

1. 光纤成像:深度学习在光纤成像中的应用进展显著,包括通过条件生成对抗网络实现高速多模光纤成像系统

2. 光谱成像:当前的光谱成像技术包括多通道滤光片、基于深度学习和波长响应曲线求逆问题的优化实现,以及衍射光栅、多路复用、超表面等技术,用于获取高光谱信息

3. 全息成像:利用深度神经网络来优化全息图的重建过程,提高成像质量,并实现复杂光学场景的快速三维重建

4. 超分辨率成像:通过深度学习技术提高光学成像系统的空间分辨率,改善图像质量

5. 计算成像优化:利用深度学习模型对光学成像过程进行优化和控制,实现更高效的成像方法

6. 简单光学成像技术:基于计算成像,发展简单和紧凑的光学成像技术,也称为简单光学。这种技术利用光学系统和图像处理算法的联合设计,实现与复杂光学系统相媲美的高质量成像

7. 端到端光学算法联合设计:计算光学成像包括了可微的衍射光学模型、折射光学模型以及基于可微光线追踪的复杂透镜模型,这些模型使得光学系统设计与图像处理算法可以联合优化

为促进科研人员、工程师及产业界人士对人工智能在光学成像领域应用技术的掌握,特举办“智能光学计算成像技术与应用”专题培训会议,本次培训会议主办方为北京软研国际信息技术研究院,承办方互动派(北京)教育科技有限公司具体相关事宜通知如下:


专题一

(直播4天)

智能光学计算成像技术与应用

(详情内容点击上方名称查看)

2025年1月18日-1月21日

专题二

(直播4天)

COMSOL光电专题

(详情内容点击上方名称查看)

2025年01月04日-01月05日

2025年01月11日-01月12日


培训对象

电磁学、光学、材料科学、电子工程、光子学与光电子学、无线电电子学、物理学、电信技术、自动化技术、仪器仪表工业、电气工程、电力工业、计算机软件及计算机应用、工业通用技术及设备、生物医学工程、金属学等领域的研究人员、工程师、研究生、及相关行业从业者,以及对超表面技术感兴趣的专业人士和跨领域研究人员。


讲师介绍

智能光学计算成像讲师

来自国家“985 工程”“211 工程”重点高校。在《ACS Photonics》、《Journal of Lightwave Technology》等国际知名期刊发表论文数十篇。担任Laser & Photonics Review, Photonics Research, Journal of Lightwave Technology, IEEE JSTQE, Optics Express, Optics Letter等光子学期刊审稿人

擅长领域:计算光子学及深度学习与光子学的交叉学科研究等。

COMSOL光电讲师

来自国家“双一流”建设高校 、“211工程”“985工程”重点高校老师。授课讲师有着丰富的COMSOL使用经验,以第一/通讯作者在《Nature Communications》、《 Physical Review Letters》、《Advanced Materials》等国际Top期刊发表论文数十篇。

擅长领域:微纳光子学、拓扑光子学、非厄米光子学、光芯片、电磁超材料器件等。

培训大纲

智能光学计算成像技术与应用

时间

课程内容

光学计算成像导论

1.计算成像的概念与现状

2.生活与科研中的典型应用场景

3.光学计算成像与计算摄影

4.深度学习增强的计算成像

图像基本概念及计算成像理论基础

1.颜色和光谱,图像在程序中的表示

2.图像传感器,成像物理模型与噪声

3.其他成像元件与光波波前分析方法

4.常见图像描述方法与图像处理流程

5.图像重构理论基础

6.一般计算成像逆问题与求解方式

Ø  实例:Poisson blending of image

机器学习及Python软件基础

1.机器学习基础概念

2.监督学习与无监督学习

3.常用算法简介(如线性回归、多层感知机等)

3.1 Python 编程基础

3.2 Python 环境搭建与工具介绍

3.3 基本语法与数据结构

3.4 矩阵运算库NumPy与GPU运算库Cupy

3.5 数据可视化工具( Matplotlib 等)

3.6 深度学习框架 PyTorch 与TensorFlow

Ø  实践:用Numpy/cupy与matplotlib绘制分形图像

图像常用深度神经网络与PyTorch/TensorFlow实现

1.深度学习简介与神经网络基础概念

2.深度学习的基本原理与训练过程

3.常用基本深度网络模型简介

3.1全连接网络(FC)

3.2卷积神经网络(CNN)

3.3带历史记忆的网络(如RNN)

4.基于PyTorch与TensorFlow的几种神经网络构建

Ø  全连接网络

Ø  卷积神经网络

Ø  U-Net

Ø  Res-Net

Ø  实践:基本的全连接网络模型与卷积神经网络的搭建与训练

图像的神经网络表示与ADMM图像重构

1.神经表示(Neural Representations)与位置嵌入(Positional   Encoding)

2.神经渲染(Neural Rendering)

3.学习式重构(Learned Reconstruction)与应用介绍

4.用ADMM算法来求解正则化逆问题

Ø  实践:用 ADMM 算法来重构图像

常见的计算成像应用

1.图像去噪与解模糊

2.空域编码-解码成像(压缩感知、单像素成像)简介

3.时域编码-解码成像(飞行时间、非视域成像)简介

4.无透镜成像

4.1无透镜成像的概念与基础

Ø  点扩散函数(PSF) 调控与无透镜成像: 散射成像实例

压缩感知和压缩编码成像

1.压缩感知与压缩成像理论

1.1基于多模光纤lantern的压缩计算成像讲解

Ø  实践:1D信号和2D图像的压缩感知重构

2.结构光照明和单像素成像理论

3.基于神经网络的单像素成像

3.1 基于神经网络的远场超分辨率鬼成像讲解

Ø  实践:基于多模光纤超快脉冲的单像素探测超快成像

高光谱成像

1.高光谱成像简介与理论知识

2.神经网络光谱成像

Ø  案例:具有高空间分辨率的宽带高光谱图像传感器(实践网络重构部分)

微纳光学计算成像

1.超构表面与微纳光学增强的计算成像简介

2.超构表面与相位获取成像

Ø  实例讲解:纳米光学高质量超构透镜成像(实践图像重构部分)

端到端光学算法联合设计

1.一般图像系统设计

2.端到端光学和图像处理系统设计

Ø  案例讲解:端到端的基于深度学习的散射介质散斑计算成像

Ø  综合实例讲解:  用一个纯相位镜头的灰度图像到高光谱图像(超光谱/解模糊/深度学习/点扩散函数设计/压缩成像)

部分案例图示:

COMSOL 多物理场仿真技术与应用-光电专题(四十一期)

(一)案列应用实操教学:

案例一

光子晶体能带分析、能谱计算、光纤模态计算、微腔腔膜求解

案例二

类比凝聚态领域魔角石墨烯的moiré 光子晶体建模以及物理分析

案例三

传播表面等离激元和表面等离激元光栅等

案例四

超材料和超表面仿真设计,周期性超表面透射反射分析

案例五

光力、光扭矩、光镊力势场计算

案例六

波导模型(表面等离激元、石墨烯等)本征模式分析、各种类型波导传输效率求解

案例七

光-热耦合案例

案例八

天线模型

案例九

二维材料如石墨烯建模

案例十

基于微纳结构的电场增强生物探测

案例十一

散射体的散射,吸收和消光截面的计算

案例十二

拓扑光子学:拓扑边缘态和高阶拓扑角态应用仿真

案例十三

二硫化钼的拉曼散射

案例十四

磁化的等离子体、各向异性的液晶、手性介质的仿真

案例十五

光学系统的连续谱束缚态

案例十六

片上微纳结构拓扑优化设计(特殊情况下,利用二维系统来有效优化三维问题)

案例十七

形状优化反设计:利用形状优化设计波导带通滤波器

案例十八

非厄米光学系统的奇异点:包括PT对称波导结构和光子晶体板系统等

案例十九

微纳结构的非线性增强效应,以及共振模式的多极展开分析

案例二十

学员感兴趣的其他案例

(二) 软件操作系统教学:

COMSOL

软件入门

初识COMSOL仿真——以多个具体的案例建立COMSOL仿真框架,建立COMSOL仿真思路,熟悉软件的使用方法

COMSOL软件基本操作

Ø  参数,变量,探针等设置方法、几何建模

Ø  基本函数设置方法,如插值函数、解析函数、分段函数等

Ø  特殊函数的设置方法,如积分、求极值、求平均值等

Ø  高效的网格划分

前处理和后处理的技巧讲解

Ø  特殊变量的定义,如散射截面,微腔模式体积等

Ø  如何利用软件的绘图功能绘制不同类型的数据图和动画

Ø  数据和动画导出

Ø  不同类型求解器的使用场景和方法

COMSOL

软件进阶

COMSOL中RF、波动光学模块仿真基础

Ø  COMSOL中求解电磁场的步骤

Ø  RF、波动光学模块的应用领域

RF、波动光学模块内置方程解析推导

Ø  亥姆霍兹方程在COMSOL中的求解形式

Ø  RF方程弱形式解析,以及修改方法(模拟特殊本构关系的物质)

Ø  深入探索从模拟中获得的结果

(如电磁场分布、功率损耗、传输和反射、阻抗和品质因子等)

边界条件和域条件的使用方法

Ø  完美磁导体和完美电导体的作用和使用场景

Ø  阻抗边界条件、过度边界条件、散射边界条件、周期性边界条件的作用

Ø  求解域条件:完美匹配层的理论基础和使用场景、 PML网格划分标准

Ø  远场域和背景场域的使用

Ø  端口使用场景和方法

Ø  波束包络物理场的使用详解

波源设置

Ø  散射边界和端口边界的使用方法和技巧(波失方向和极化方向设置、S参数、反射率和透射率的计算和提取、高阶衍射通道反射投射效率的计算)

Ø  频域计算、时域计算

Ø  点源,如电偶极子和磁偶极子的使用方法

材料设置

Ø  计算模拟中各向同性,各向异性,金属介电和非线性等材料的设置

Ø  二维材料,如石墨烯、MoS2的设置

Ø  特殊本构关系材料的计算模拟(需要修改内置的弱表达式)

网格设置

Ø  精确仿真电磁场所需的网格划分标准

Ø  网格的优化

Ø  案列教学

COMSOL WITH MATLAB功能简介

Ø COMSOL WITH MATLAB 进行复杂的物理场或者集合模型的建立(如超表面波前的衍射计算)

Ø COMSOL WITH MATLAB 进行复杂函数的设置(如石墨烯电导函数的设置和仿真)

Ø  COMSOL WITH MATLAB 进行高级求解运算和后处理

Ø  COMSOL WITH MATLAB求解具有色散材料的能带

部分案例图示:



培训特色

智能光学计算成像专题

1、光学为骨,AI为翼:以光学为基础,融合机器学习和深度学习算法,特别关注软硬件协同设计。

2、理论与实践并重:涵盖成像经典理论、常用计算成像算法及应用,结合高水平论文(如Nature、Nature Communications、Optica等)讲解,并通过实际案例操作加深理解。

3、热点应用全覆盖:涵盖光谱成像、压缩感知成像、无透镜成像、散斑成像、端到端光学算法联合设计等前沿技术。

4、启发式讨论:通过理论学习、实践操作和讨论相结合,培养学员的整合能力和创新思维。

COMSOL光电专题

1、基础入门阶段采用Step by step的教学方式带着做具体的案例,在案例中学习COMSOL应用必备技能,帮助学员快速掌握COMSOL的仿真框架,建立正确的仿真思路

2、通过模块详解掌握各种边界条件和域条件的设置方法和技巧,区分每个边界条件或域条件应该在什么场景中应用。

3、掌握精确仿真电磁场所需的网格划分标准及优化技巧,深入探索从模拟中获得的结果(如分析设计方案中的电磁场分布、功率损耗、传输和反射、阻抗和品质因子等),对光子器件、集成光路、光波导、耦合器、光纤等设计进行优化。

4、应用COMSOL WITH MATLAB 进行复杂物理场的建立或者集合模型的建立,如超表面波前的衍射计算、石墨烯电导函数的仿真、具有色散材料的能带求解等。

5、整个课程通过多个场景案例的应用讲解,了解借助 COMSOL在理想或多物理场环境下分析、评估、预测射频、微波和毫米波等行业中涉及的器件的性能的方法,使设计满足当前和未来发展。


报名须知

01

时间地点

智能光学计算成像技术与应用

2025年1月18日-1月21日

在线直播(授课四天)


COMSOL光电多场耦合仿真技术与应用

2025年01月04日-01月05日

2025年01月11日-01月12日

在线直播(授课四天)

02

报名费用

(含报名费、培训费、资料费)

课程名称

价格(元)

智能光学计算成像技术与应用

4500

COMSOL光电多场耦合仿真技术与应用

4300

优惠一:

2024年12月27日前报名缴费可享受200元早鸟价优惠;

优惠二:
参加过我单位其它课程的老学员,可享受额外200元优惠;

【注】费用提供用于报销的正规机打发票及盖有公章的纸质通知文件;北京中科万维智能科技有限公司作为本次会议会务合作单位,负责注册费用收取和开具发票,可开具会议费发票和发送会议邀请函;

03

增值服务

1、凡报名学员将获得本次培训电子课件及案例模型文件

2、培训结束可获得本次所学专题课程全部无限次回放视频

3、凡老学员推荐报名者,可享受额外两百元优惠;

4、参加培训并通过试的学员,可以获得:主办方北京软研国际信息技术研究院培训中心颁发的专业技能结业证书

04

联系方式

知光谷
我为光伏发光,新型光伏第一号
 最新文章