焦文涛研究组在热耦合电动力强化低渗透土壤中物质传输方面取得新进展

学术   2025-01-31 21:44   辽宁  

  土壤中低渗透孔道中物质传输受限,成为土壤污染修复的关键瓶颈。电动传输可提高低渗透土壤污染物和降解菌的可达性,热效应提高污染物降解菌的迁移活性,两者结合预期可实现土壤物质的精准靶向传输,但其传输和耦合热场作用的机制尚不明晰。阐明低渗透土壤中热耦合电动力传输的机制,对土壤有机污染的低碳高效微生物修复具有重要意义。


  针对热耦合电动力在纳米孔道内的污染物传输机制不清的问题,中国科学院生态环境研究中心焦文涛研究组与德国亥姆霍兹环境研究中心Lukas Y. Wick 教授合作,以SEM-EDS和BET孔道占用从微观角度揭示了热耦合电动力驱动新污染物PFOA在难到达的2-10nm吸附位点的颗粒内扩散的机理;热效应通过粘滞性强化电渗微流是其主要的耦合作用机制。

  针对热耦合电动力在微米孔道内的降解菌传输机制不明的问题,以流式细胞仪和石英晶体微天平量化表征了热耦合电动力降低细菌吸附刚性,从而强化了降解菌的迁移达3.5倍;热效应通过调控固液介质理化性质强化电泳克服DLVO吸附力,是热-电动力耦合的主要机理;相关性矩阵热图分析表明,粘滞系数、介电常数、zeta点位是热强化电动力的主控因子。
图1. 热耦合电动力传输污染物(A)和降解菌(B)的物理机制
  相关研究成果发表在Environmental Science & Technology (Shan et al., 2024, 2025)和Journal of Environmental Sciences (Shan et al., 2023)。单永平助理研究员为论文第一作者,焦文涛研究员为通讯作者。该研究得到了国家自然科学基金(42277011 & 42077126)、博士后面上、特别资助(2022M713300、2023T160667)等项目的资助。
论文链接点击本页左下角“阅读原文”查看
https://pubs.acs.org/doi/10.1021/acs.est.3c10590
https://pubs.acs.org/doi/10.1021/acs.est.4c07954
https://linkinghub.elsevier.com/retrieve/pii/S1001074223004722


近期文章

 (↓点击标题可直接查看↓)

>>>>  “柴油车排放污染控制”荣获2024年度中国科学院杰出科技成就奖

>>>>  生态环境研究中心官微历年TOP1回顾

>>>>  傅伯杰院士团队在全球旱区凋落物分解研究中取得新进展

>>>>  2025年度“海外优青”及高层次人才公开招聘启事

农环视界
有科研 有应用 有观点 有态度
 最新文章