原文链接:http://tecdat.cn/?p=13663
当前,人口形势复杂多变,人口研究杂志近期刊发的论文预测中国将迎来前所未有的人口死亡高峰。这一趋势与年轻人生育意愿低的现状相互交织,给社会带来诸多挑战。我们在思考这些人口问题的同时,也需深入研究人口死亡率,以更好地理解和应对未来的发展(点击文末“阅读原文”获取完整代码数据)。
相关视频
今天,我们在研究人口数据集,可以观察到很多波动性。
由于缺少一些数据,我们想使用广义非线性模型来获得死亡率曲面图的平滑估计,并编写了一些代码。
我们得到这样的结果:
由于我们缺少一些数据,因此我们想使用一些广义非线性模型。因此,让我们看看如何获得死亡率曲面图的平滑估计。我们编写一些代码。
D=DEATH$Male
E=EXPO$Male
A=as.numeric(as.character(DEATH$Age))
Y=DEATH$Year
I=(A<100)
base=data.frame(D=D,E=E,Y=Y,A=A)
subbase=base[I,]
subbase=subbase[!is.na(subbase$A),]
第一个想法可以是使用Poisson模型,其中死亡率是年龄和年份的平稳函数
可以使用
persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")
死亡率曲面图
还可以提取年份的平均值,这是 Lee-Carter模型中系数的解释
predAx=function(a) mean(predict(regbsp,newdata=data.frame(A=a,
Y=seq(min(subbase$Y),max(subbase$Y)),E=1)))
plot(seq(0,99),Vectorize(predAx)(seq(0,99)),col="red",lwd=3,type="l")
我们有以下平滑的死亡率
点击标题查阅往期内容
左右滑动查看更多
可以使用以下方法获得参数估计值
persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")
粗略的死亡率曲面图是
有以下 系数。
plot(seq(1,99),coefficients(regnp)[2:100],col="red",lwd=3,type="l")
这里我们有很多系数,但是,在较小的数据集上,我们具有更多的可变性。
代码片段
persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")
现在的死亡人数是
得出多年来随年龄变化的平均死亡率,
BpA=bs(seq(0,99),knots=knotsA,Boundary.knots=range(subbase$A),degre=3)
Ax=BpA%*%coefficients(regsp)[2:8]
plot(seq(0,99),Ax,col="red",lwd=3,type="l")
然后,我们可以使用样条函数的平滑参数,并查看对死亡率曲面的影响
persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")
本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群!
点击文末“阅读原文”
获取全文完整代码数据资料。
本文选自《R语言预测人口死亡率:用李·卡特(Lee-Carter)模型、非线性模型进行平滑估计》。
点击标题查阅往期内容