我校王琦进教授团队在模式识别与人工智能领域国际顶级期刊发表高水平论文

教育   2024-11-09 20:09   安徽  

近日,我校王琦进教授团队在稀疏目标检测技术研究上取得新进展。研究论文“Apply prior feature integration to sparse object detectors”(论文链接https://doi.org/10.1016/j.patcog.2024.111103)被SCI国际顶级期刊《Pattern Recognition》收录。我校2022级联培硕士研究生钱雨为第一作者,王琦进教授为通讯作者,该论文的发表是我校在科学研究与人工智能学科建设上的又一重要成果。

《Pattern Recognition》是模式识别与人工智能领域国际公认的顶级学术期刊,由Elsevier公司出版。该期刊2024年的影响因子为7.5,稳居中科院计算机科学一区TOP期刊,同时被国家一级学会—中国计算机学会(CCF)列为人工智能领域B类推荐期刊、中国自动化学会(CAA)A类推荐期刊,彰显了其卓越的学术影响力与地位。 



论文聚焦于稀疏目标检测中的高斯噪声框去噪难题,针对噪声框在特征金字塔中的低效匹配以及全局特征捕捉的挑战,团队创造性地提出了Prior Sparse R-CNN目标检测框架。该框架巧妙设计了一种聚合编码器,通过扩展残差块和特征聚合策略,有效解决了目标尺度变化带来的检测难题,并在单特征图下实现了检测效率的显著提升。

尤为值得一提的是,Prior Sparse R-CNN引入了区域生成网络(Region Generation Network, RGN),通过额外的训练过程生成特征图的先验预测,这些先验信息与噪声框进行精准匹配,显著提升了训练的精确度。与现有方法相比,Prior Sparse R-CNN的平均精度(AP)提高了1.5个百分点,同时训练周期缩短至原来的3/5,展现了良好的性能提升与效率优化。





该成果不仅为稀疏目标检测技术的发展开辟了新的路径,也进一步彰显了我校在人工智能领域的研究底蕴与贡献。未来,我校将继续在人工智能及相关科研领域深耕细作,不断攀登科技高峰,为高质量应用型人才培养贡献力量。









大美新华园
   




推荐阅读














《早上好,新华人!》

揭秘新华园掌勺人的一天!

 制作掐丝珐琅、练瑜伽、拍摄微电影……这样硬核又有趣的选修课到底谁在上啊!!!》
编辑 | 王伟灿
图文来源 | 校园网
初审 | 王伟灿 陆如海 翟漱文

终审 | 朱玉娟

安徽新华学院
安徽新华学院坐落于包公故里、科教基地、历史名城安徽省省会合肥,地处合肥市国家高新技术产业开发区大蜀山森林公园南麓,是经教育部批准,拥有学士学位授予权的省属普通本科高校。
 最新文章