据TAR官网显示,来自多伦多大学的Ole-Kristian Hope、不列颠哥伦比亚大学的Cyndia Wang、南京农业大学的吴雅倩 、中国人民大学的张敏,合作撰写的论文“Does Convergence with International Standards on Auditing Improve Audit Quality? ”在国际会计学顶刊《The Accounting Review》线上正式发表。
Title: Does Convergence with International Standards on Auditing Improve Audit Quality?
与国际审计准则的趋同是否提高了审计质量?
Ole-Kristian Hope
多伦多大学
Cyndia Wang
不列颠哥伦比亚大学
吴雅倩
南京农业大学
张敏
中国人民大学
Many countries have converged their domestic auditing standards with International Standards on Auditing (ISA). This study provides global empirical evidence on first-order determinants of audit quality by examining whether and how convergence affects audit quality through utilizing data on 41 jurisdictions and using a staggered difference-in-differences approach. We find that ISA convergence leads to higher audit quality on average. The positive effect is stronger for clients of domestic audit firms, in jurisdictions with stronger enforcement, and when the ISA convergence level is higher. Insights from textual features suggest that changes in principle-orientation, comparability, readability, and size (or length) of auditing standards are positively related to audit quality. Exploratory analyses of textual content using machine learning reveal that the emphases of ISA on going-concern assessment and legal compliance, fraud risk assessment and internal control evaluation, and related-party transactions and subsequent events contribute to enhanced audit quality.
许多国家已经将国内审计标准与国际审计准则(ISA)趋同。本研究通过利用41个司法管辖区的数据,并采用分阶段的双重差分方法,提供了全球实证证据,以检验审计质量的一阶决定因素,即趋同是否以及如何影响审计质量。我们发现,平均而言,ISA趋同导致审计质量提高。对于国内审计公司的客户,这种积极效应在执行力度更强的司法管辖区以及ISA趋同水平更高的地区更为显著。从文本特征的洞察表明,审计标准的原则导向、可比性、可读性以及大小(或长度)的变化与审计质量呈正相关。使用机器学习对文本内容进行的探索性分析揭示,ISA对持续经营评估和法律合规、欺诈风险评估和内部控制评价,以及关联方交易和后续事件的重点有助于提高审计质量。
Tips:“机器学习在经济金融领域的应用”研讨会即将举办,欢迎对机器学习方法及其应用感兴趣的学者和学生报名!
疯狂暗示↓↓↓↓↓↓↓↓↓↓↓