随着ChatGPT/GPT4等大语言模型和Midjourney、StableDiffusion等AI绘图工具的问世,2024年我们进入了AI4.0时代。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。自ChatGPT开发者大会发布以来,其强大的信息整合和对话能力震惊了世界,以ChatGPT为代表的人工智能生产内容技术(简称AIGC)浪潮引起了广泛关注。本次专门为科研人员设计的GPT课程,致力于提升论文写作效率和科研能力,通过全面介绍和实操训练最新的人工智能模型如GPT及其他前沿技术,使学员能够在科研和学术写作中取得显著成效。课程内容丰富,课程涵盖了从文献自动检索到论文内容的自动生成,以及专业的论文润色技巧,极大提升了写作的速度和质量,课程深入讲解如何利用AI工具进行复杂数据的分析处理,从而帮助科研人员在数据洪流中快速定位关键信息,发掘数据背后的科学问题和解决方案,加速科研创新过程。我们还将探讨如何有效地与AI系统交流,以获取最准确的科研指导和支持,这在处理复杂或跨学科的科研问题时显得尤为重要。通过实际操作演练,课程不仅帮助学员掌握具体技能,还将提供策略和技巧,使学员能够更好地应用这些工具解决实际问题。无论是在撰写科研论文,还是在进行科学研究与数据分析时,本课程都旨在让科研人员能够更加自如地运用AI技术,提高科研效率,加强论文的竞争力和影响力。中国智慧工程研究会联合中科软研(北京)科学技术中心(www.fzby.org.cn)举办“ChatGPT/GPT-4科研应用、论文写作、数据分析与AI绘图实战培训班” 现通知如下:
一、组织机构
主办单位:中国智慧工程研究会职业发展规划工作委员会
承办单位:中科软研(北京)科学技术有限公司、北京富卓佰扬科技有限公司
二、培训时间及方式
1、会议时间
2024年07月19日—07月21日
上海站+线上直播(腾讯会议)
2024年07月26日—07月28日
北京站+线上直播(腾讯会议)
注:两期课程,现场及线上直播同步进行,可根据自己情况选择其中一期报名即可,可线上参会。名额有限,请尽快与我们联系预留名额!
三、培训特色及收获
特色:1.【福利】赠送每人1个GPT4o会员账号,没有使用次数限制,不需要翻墙。2.倡导“安全,绿色”上网,全程采用国内直连的ChatGPT官网平台,网站界面,使用方式,所有功能与国外ChatGPT官网完全一致。讲解不需要付费,不需要充值的GPT-4账号,可使用GPT-4o、Claude3 Opos, Google Gemini等主流大模型,以及GPT-4的学术相关插件;3.赠送一个可以终身免费使用ChatGPT账号;4.针对实际SCI论文进行解读分析,详细讲解如何结合ChatGPT进行SCI论文写作;5.课程内容的90%以上为实际案例操作,深度剖析ChatGPT在科研学术中的最佳应用;6.本培训提供永久答疑服务。课后实践学习的过程中遇到问题,可以随时找老师进行交流;7.参加本次培训后,后期相同的培训本人可免费参加线上1次,现场培训可终身免费参加;8.前30位报名赠送往届培训视频及资料; 9.培训结束后提供完整的培训视频回放。
收获:1.了解AI的底层算法和原理,最新动态及产业发展,全面、深度的了解ChatGPT与人工智能生成内容(AIGC)核心技术要素、产业现状、发展趋势与机遇;2.提升论文写作效率:学习如何利用GPT自动化文献搜索和论文写作,大幅提升写作速度及质量,修改科研论文及工作报告,提供写作能力及优化工作,提升您的写作能力及提出优化方案;3.增强数据分析技能:通过GPT进行高级数据分析,使科研人员能更深入分析数据,加速科研发现。4.优化科研问题解决:掌握与GPT交流,有效获取科研信息和解决方案,提高问题解决效率。5.提高论文创新性和影响力:使用GPT增加论文的创新点和理论深度,提升学术影响力。6.提高各种AI绘图工具的使用:掌握生成各种类型的科研绘图。学会使用各种新的AI工具,提高工作效率。
四、往届回顾
点击下方图片可放大观看(部分)
五、培训专家
中国科学院、清华大学等科研机构的高级专家,人工智能领域一线实战专家,10年人工智能项目开发经验,8年人工智能行业培训经验。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。主持完成过多项国家及企业重大项目,拥有20项专利,出版人工智能相关书籍3本,曾给学校、医院、企业、气象局等单位完成过多项人工智能相关项目。受邀为中国移动、中国电信、中国银行、华夏银行、太平洋保险、国家电网、中海油、格力电器等包括世界五百强在内的多家高校及企业做人工智能技术企业内训。业内顶尖IT培训平台30万学员好评率99%;
六、培训内容
大章节 | 小章节 |
第一章:2024年AI领域最新发展介绍 | 1. OpenAI最新模型-GPT4o介绍 2.GPT4o与ChatGPT3.5区别 3.国外大语言模型Claude3,Gemini,LLama3技术详解 4.国内大语言模型文心一言,通义千问,Kimi,智谱清言,星火认知使用介绍。 5.GPT4o的各种插件应用介绍 6.AI工具与科研应用的结合 |
第二章:大语言模型(LLM)Prompt提示词高级使用技巧 | 1.大语言模型和搜索引擎的区别 2.PromptEngineering提示词工程介绍 3.(课堂动手练习)技巧1:角色扮演 4.(课堂动手练习)技巧2:使用不同的语气 5.(课堂动手练习)技巧3:给出具体任务 6.(课堂动手练习)技巧4:利用上下文管关联的特点 7.(课堂动手练习)技巧5:零样本思维链提示-提高模型逻辑推理能力 8.(课堂动手练习)技巧6:多样本思维链提示-提升模型模仿能力 9.(课堂动手练习)技巧7:自洽性-提升模型数学能力 10.(课堂动手练习)技巧8:生成知识提示-提升模型知识水平 11.如何写好一篇论文的提示词 12.如何与AI交流科研问题 |
第三章:AI在教学/科研中的应用实战案例 | 1.(课堂动手练习)使用AI进行文献翻译 2.(课堂动手练习)使用AI生成临床研究的数据表 3.(课堂动手练习)使用AI识别公式并保存 4.(课堂动手练习)使用AI将文章中的数据整理成表格 5.(课堂动手练习)使用AI帮你进行文章内容分类 6.(课堂动手练习)使用AI协助撰写工作报告 7.(课堂动手练习)使用AI快速生成选择/填空/问答/判断题 |
第四章:让GPT成为你的工作秘书 | 1.(课堂动手练习)让GPT帮你整理文章数据 2(课堂动手练习)让GPT帮你进行数据处理 3.(课堂动手练习)让GPT帮你进行用户评论分类 4.(课堂动手练习)让GPT帮你优化工作总结 5.(课堂动手练习)使用GPT改进你的产品或服务 6.(课堂动手练习)使用GPT分析不同产品的差异 7.(课堂动手练习)向GPT寻求商业和营销意见 8.(课堂动手练习)让GPT帮你生成特定知识的测试题 9.(课堂动手练习)让GPT帮你写合同 10.(课堂动手练习)让GPT帮你写简历 11.(课堂动手练习)让GPT帮你进行模拟面试 12.(课堂动手练习)让GPT生成数学公式并保存 13.(课堂动手练习)让GPT根据特定数据生成图表 |
第五章:AI辅助论文搜索与阅读 | 1. (课堂动手练习)利用AI进行论文搜索 2.(课堂动手练习)论文拓展平台使用 3.(课堂动手练习)最好用的AI论文阅读交流神器介绍 4.(课堂动手练习)RAG检索增强生成介绍 5.(课堂动手练习)利用AI进行论文阅读总结交流。 6.(课堂动手练习)最好用的AI论文翻译神器介绍 7.(课堂动手练习)利用AI对论文中的公式讲解 |
第六章:AI辅助写作ABCD模型(通用方法论) | 1.(课堂动手练习)【A模式】AI直接写(给定框架或者不给定框架) 2.(课堂动手练习)【B模式】投喂式写作(指定引用内容的写作) 3.(课堂动手练习)【C模式】模仿式写作(指定范文,给出观点,套用格式) 4.(课堂动手练习)【D模式】连接论文数据数据库进行写作(搜索相关论文,参考相关论文内容) |
第七章:让AI成为您的论文写作助手 | 1.(课堂动手练习)利用AI生成论文选题 2.(课堂动手练习)利用AI辅助大纲撰写 3.(课堂动手练习)利用AI辅助写摘要 4.(课堂动手练习)利用AI辅助写前言 5.(课堂动手练习)利用AI辅助写技术方法 6.(课堂动手练习)利用AI辅助描述实验数据 7.(课堂动手练习)利用AI辅助进行数据分析 8.(课堂动手练习)利用AI辅助写结论 9.(课堂动手练习)利用AI进行论文写作翻译 10.(课堂动手练习)利用AI帮你生成完整的文献综述(附带真实参考文献) 11.(课堂动手练习)AI写作过程中自动标注参考文献的2种方法 |
第八章:AI辅助科研论文优化 | 1.(课堂动手练习)利用AI辅助中英文论文润色 2.(课堂动手练习)利用AI辅助论文润色并生成表格对比润色效果 3.(课堂动手练习)利用AI进行论文降重的2种方案 4.(课堂动手练习)利用AI提出论文审稿意见和具体修改方案 5.(课堂动手练习)如何判别文章是不是AI生成 6.(课堂动手练习)如何避免AI生成的文章被检测 |
第九章:AI在科研绘图中的应用 | 1.(课堂动手练习)根据本地数据绘制散点图,折线图,柱状图,饼图等 2.(课堂动手练习)绘制不同特征之间的相关系数图 3.(课堂动手练习)绘制不同数据特征的多变量联合分布图 4.(课堂动手练习)绘制数据缺失值可视化图 5.(课堂动手练习)绘制不同模型算法的结果对比图 6.(课堂动手练习)绘制模型算法的ROC曲线图 7.(课堂动手练习)绘制特征重要性排序图 8.(课堂动手练习)其他各种图像的AI自动绘图方法 |
第十章:SCI论文解读及写作 | 1.详细解读几篇经典SCI论文。 ChatGPT应用:将科研呢项目中的数据处理、分析、建模和可视化成果转化为学术论文,并利用ChatGPT优化论文写作流程。 2.数据处理 描述:详述数据预处理、清洗和转换步骤。 ChatGPT应用:生成数据处理部分的文本描述,确保术语准确。 3.建模方法 描述:阐明模型选择、训练过程和参数优化。 ChatGPT应用:帮助撰写模型选择和优化策略的逻辑论述。 4.结果可视化 描述:展示关键图表,如准确率和ROC曲线,并解释其意义。 ChatGPT应用:生成图表的描述和解释,简洁明了。 5.成果讨论 描述:分析模型表现,讨论其在相关领域的应用潜力。 ChatGPT应用:生成对模型结果的深入讨论和潜在应用的描述。 6.论文撰写 ChatGPT应用:辅助撰写论文各部分,包括摘要、引言和结论,提高写作效率。 |
第十一章:AI的拓展应用 | 1.(课堂动手练习)利用AI自动创建精美PPT 2.(课堂动手练习)利用AI根据文章内容或自定义大纲创建PPT 3.(课堂动手练习)利用AI快速产出科普短视频 4.(课堂动手练习)利用AI快速制作流程图 5.(课堂动手练习)利用AI快速制作序列图 6.(课堂动手练习)利用AI快速制作思维导图 |
第十二章:不会写代码也能成为编程高手 | 1.(课堂动手练习)利用AI实现某一特定功能的程序 2.(课堂动手练习)利用AI对代码进行解释 3.(课堂动手练习)利用AI进行代码纠错及修改 4.(课堂动手练习)利用AI回答代码疑问 5.(课堂动手练习)利用AI帮你优化代码 6.(课堂动手练习)利用AI读取本地数据然后写代码 7.(课堂动手练习)利用AI帮你提供完整项目代码并不断修正代码 8.(课堂动手练习)自动化AI编程助手介绍 |
第十三章:基于AI完成的机器学习/深度学习项目案例 | 1.(课堂动手练习)用AI了解科研/项目相关知识 2.(课堂动手练习)用AI优化科研/项目的设计 3.(课堂动手练习)用AI解答科研/项目相关问题 4.(课堂动手练习)用AI读取本地数据(Excel数据或CSV数据等) 5.(课堂动手练习)用AI对科研/项目数据进行深度学习建模程序编写 6.(课堂动手练习)如何分析特征重要性(哪些特征对标签的影响最大) 7.(课堂动手练习)多种常用机器学习算法结果对比 |
第十四章:GPT-4o功能详解 | 1.(课堂动手练习)GPT-4o不同情绪的语音功能介绍 2.(课堂动手练习)GPT-4o联网功能介绍 3.(课堂动手练习)GPT-4o图像识别能力详细解析 4.(课堂动手练习)GPT-4o识别统计分析图并生成对应画图的代码 5.(课堂动手练习)GPT-4o识别图片中的表格数据并保存 6.(课堂动手练习)GPT-4o识别图片中的公式并进行编辑 7.(课堂动手练习)利用GPT-4o完成全自动数据分析、绘图、建模 8.(课堂动手练习)利用GPT-4o连接论文数据库 |
第十五章:AI绘图工具Midjourney应用 | 1.AI画图原理介绍 2.文生图和图生图介绍 3.CLIP模型和扩散模型介绍 4.(课堂动手练习)Midjourney使用介绍 5.(课堂动手练习)Midjourney提高分辨率及图像微调 6.(课堂动手练习)Midjourney参考别人的优秀作品进行绘图 7.(课堂动手练习)Midjourney图生图高级用法 8.(课堂动手练习)Midjourney的参数使用 9.(课堂动手练习)Midjourney科研作图应用 |
第十六章:AI绘图工具StableDiffusion应用 | 1.StableDiffusion工具介绍 2.StableDiffusion环境部署介绍 3.StableDiffusion工作界面介绍 4.(课堂动手练习)使用Lora模型产生写实人物图像 5.(课堂动手练习)图像的局部重绘 6.(课堂动手练习)StableDiffusion的插件系统介绍 7.(课堂动手练习)使用线稿图生成装修和建筑 8.(课堂动手练习)使用线稿图给图片上色 9.(课堂动手练习)产生特定姿态的人物图像 |
第十七章:GPT-4o科研绘图工具DALL-E3应用 | 1.(课堂动手练习)DALL-E3模型介绍 2.(课堂动手练习)DALL-E3与GPT4结合使用 3.(课堂动手练习)DALL-E3中文提示词的使用 4.(课堂动手练习)DALL-E3根据上下文内容修改图片 5.(课堂动手练习)DALL-E3在图像中生成特定文字 6.(课堂动手练习)DALL-E3绘图结果的不断优化 7.(课堂动手练习)DALL-E3科研作图应用 |
辅助课程 | 1.课程总结及技术发展展望。 2.根据学员感兴趣的领域,讲解ChatGPT在该领域的应用方法 3.建立信群答疑群(课后提供终身免费答疑,提供一对一答疑) 4.配备AIGC/GPT/AI绘图/等教材,课后逐步提高能力。 |
七、培训费用及证书
培训收费有三类,请您按自身需要灵活选择。
A类:收费3900元/人(含培训费、资料费、A类证书费、发票费等)食宿自理。证书:可获得中科软研(北京)科学技术中心颁发的高级《AIGC应用工程师》结业证书;
B类:收费4800元/人(含培训费、资料费、B类证书费、发票费等)食宿自理。证书:可获得中国智慧工程研究会职业发展规划工作委员会颁发的高级《大模型应用开发工程师》专业技术人才职业技能证书,纳入委员会数据库,全国通用可查,可以作为晋升、评级的有效凭证。
C类:收费5800元/人(含会议费、资料费、B类+C类证书费、发票费等)食宿自理。证书:可获得工信部颁发的高级《人工智能应用工程师》职业技能证书,该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据,官网可查。
本次培训由中科软研(北京)科学技术有限公司及北京富卓佰扬科技有限公司收取费用并开具发票,可事先开发票,后公对公转账;可开培训费、会议费、会议注册费、资料费、技术服务费、检测费、测试费等等,本次线下培训差旅费,食宿费自理。
优惠政策
1、学生凭学生证优惠300元;
2、2人以上(含)团体报名每人可减少200元;
3、3人以上(含)团体报名每人可减少300元;
4、4人以上(含)团体报名每人可减少400元;
5、5人以上(含)团体报名,另外赠送一个名额;
6、以上优惠政策不能同时享受,只能享受其中一种。
八、联系方式
联系人:蔡老师:15001189125(微信同号)
微信二维码:
课程二:
各相关单位:
主办单位:
中国智慧工程研究会职业发展规划工作委员会
承办单位:
中科软研(北京)科学技术有限公司、北京富卓佰扬科技有限公司
1.能够使用ChatGPT完成医学论文撰写、修改论文及工作报告,提供写作能力及优化工作,提升您的写作能力及提出优化方案;2.掌握AI在医学领域的应用:深入理解各类AI模型,如ChatGPT/GPT4,Claude3,Gemini,CNN,LSTM等,及其在医学研究和临床实践中的具体应用;3.技能提升:通过实战演练掌握使用AI工具处理医学影像、生物数据分析、疾病预测等医学问题的能力;4.编程与数据分析能力:掌握如何使用Python和相关的数据科学库进行医学数据的编程处理和分析;5.研究能力增强:获得使用AI技术进行医学研究和撰写科学论文的实践经验;6.创新思维:培养利用AI解决复杂医学问题的创新思维和解决方案开发能力;7.职业发展:为从事医学研究、临床应用和医学数据分析的职业生涯提供技术支持和知识储备。
大章节 | 小章节 |
第一章:2024年AI在医学中的应用介绍及实操 | 1.OpenAI最新模型-GPT4o介绍 2.GPT4o与ChatGPT3.5区别 3.国外大语言模型Claude3,Gemini,LLama3技术详解 4.国内大语言模型文心一言,通义千问,Kimi,智谱清言,星火认知使用介绍。 5.GPT4o的各种插件应用介绍 6.AI工具与科研应用的结 |
第二章:大语言模型(LLM)Prompt提示词高级使用技巧 | 1.大语言模型和搜索引擎的区别 2.PromptEngineering提示词工程介绍 3.(课堂动手练习)技巧1:角色扮演 4.(课堂动手练习)技巧2:使用不同的语气 5.(课堂动手练习)技巧3:给出具体任务 6.(课堂动手练习)技巧4:利用上下文管关联的特点 7.(课堂动手练习)技巧5:零样本思维链提示-提高模型逻辑推理能力 8.(课堂动手练习)技巧6:多样本思维链提示-提升模型模仿能力 9.(课堂动手练习)技巧7:自洽性-提升模型数学能力 10.(课堂动手练习)技巧8:生成知识提示-提升模型知识水平 11.如何写好一篇论文的提示词 12.如何与AI交流医学相关科研问题 |
第三章:AI在医学教学/研究中的应用实战案例 | 1.(课堂动手练习)使用AI进行医学文献翻译 2.(课堂动手练习)使用AI生成临床研究的数据表 3.(课堂动手练习)使用AI识别医学图像中的公式并保存 4.(课堂动手练习)使用AI将医学研究文章中的数据整理成表格 5.(课堂动手练习)使用AI帮你进行用户评论分类 6.(课堂动手练习)使用AI协助撰写医学工作报告 7.(课堂动手练习)使用AI快速生成选择/填空/问答/判断题 |
第四章:AI辅助医学论文搜索与阅读 | 1.(课堂动手练习)利用AI进行医学论文搜索 2.(课堂动手练习)医学论文拓展平台使用 3.(课堂动手练习)最好用的AI医学论文阅读交流神器介绍 4.(课堂动手练习)RAG检索增强生成在医学领域的应用 5.(课堂动手练习)利用AI进行医学论文阅读总结交流 6.(课堂动手练习)最好用的AI医学论文翻译神器介绍 7.(课堂动手练习)利用AI对医学论文中的公式和图表讲解 |
第五章:AI辅助医学论文写作ABCD模型(通用方法论) | 1.(课堂动手练习)【A模式】AI直接写医学论文(给定框架或者不给定框架) 2.(课堂动手练习)【B模式】投喂式写作(指定引用医学文献的写作) 3.(课堂动手练习)【C模式】模仿式写作(指定范文,给出医学观点,套用格式) 4.(课堂动手练习)【D模式】连接医学论文数据库进行写作(搜索相关医学论文,参考相关内容) |
第六章:让AI成为您的医学论文写作助手 | 1.(课堂动手练习)利用AI生成医学论文选题 2.(课堂动手练习)利用AI辅助医学论文大纲撰写 3.(课堂动手练习)利用AI辅助写医学论文摘要 4.(课堂动手练习)利用AI辅助写医学论文前言 5.(课堂动手练习)利用AI辅助写医学技术方法 6.(课堂动手练习)利用AI辅助描述医学实验数据 7.(课堂动手练习)利用AI辅助进行医学数据分析 8.(课堂动手练习)利用AI辅助写医学论文结论 9.(课堂动手练习)利用AI进行医学论文写作翻译 10.(课堂动手练习)利用AI帮你生成完整的医学文献综述(附带真实参考文献) 11.(课堂动手练习)AI写作过程中自动标注医学参考文献的2种方法 |
第七章:AI辅助医学科研论文优化 | 1.(课堂动手练习)利用AI辅助中英文医学论文润色 2.(课堂动手练习)利用AI辅助医学论文润色并生成表格对比润色效果 3.(课堂动手练习)利用AI进行医学论文降重的2种方案 4.(课堂动手练习)利用AI提出医学论文审稿意见和具体修改方案 5.(课堂动手练习)如何判别医学文章是不是AI生成 6.(课堂动手练习)如何避免AI生成的医学文章被检测 |
第八章:AI在医学科研绘图中的应用 | 1.(课堂动手练习)根据本地医学数据绘制散点图,折线图,柱状图,饼图等 2.(课堂动手练习)绘制不同医学特征之间的相关系数图 3.(课堂动手练习)绘制不同医学数据特征的多变量联合分布图 4.(课堂动手练习)绘制医学数据缺失值可视化图 5.(课堂动手练习)绘制不同医学模型算法的结果对比图 6.(课堂动手练习)绘制医学模型算法的ROC曲线图 7.(课堂动手练习)绘制医学特征重要性排序图 8.(课堂动手练习)其他各种医学图像的AI自动绘图方法 |
第九章:SCI医学论文解读及写作 | 详细解读几篇经典SCI医学论文。 ChatGPT应用:将医学科研项目中的数据处理、分析、建模和可视化成果转化为学术论文,并利用ChatGPT优化医学论文写作流程。 数据处理 描述:详述医学数据预处理、清洗和转换步骤。 ChatGPT应用:生成数据处理部分的文本描述,确保术语准确。 建模方法 描述:阐明医学模型选择、训练过程和参数优化。 ChatGPT应用:帮助撰写模型选择和优化策略的逻辑论述。 结果可视化 描述:展示关键医学图表,如准确率和ROC曲线,并解释其意义。 ChatGPT应用:生成图表的描述和解释,简洁明了。 成果讨论 描述:分析医学模型表现,讨论其在相关领域的应用潜力。 ChatGPT应用:生成对模型结果的深入讨论和潜在应用的描述。 论文撰写 ChatGPT应用:辅助撰写医学论文各部分,包括摘要、引言和结论,提高写作效率。 |
第十章:AI的拓展应用 | 1.(课堂动手练习)使用AI工具自动创建医学教育PPT 2.(课堂动手练习)使用AI工具根据医学研究文章内容创建PPT 3.(课堂动手练习)使用AI工具快速产出医学科普短视频 |
第十一章:定制自己的GPTs应用 | 1.(课堂动手练习)热门的自定义GPTs使用介绍 2.(课堂动手练习)通过聊天交流的方式制作针对医学领域的GPTs 3.(课堂动手练习)通过自定义的方式制作医学研究专用GPTs 4.(课堂动手练习)GPTs的3种分发方式 5.(课堂动手练习)GPTs的action功能介绍 6.(课堂动手练习)论文改进专家(GTPs) 7.(课堂动手练习)论文搜索(GTPs) 8.(课堂动手练习)论文写作(GTPs) |
第十二章:GPT-4o功能详解 | 1.(课堂动手练习)GPT-4o不同情绪的语音功能介绍 2.(课堂动手练习)GPT-4o联网功能介绍 3.(课堂动手练习)GPT-4o图像识别能力详细解析 4.(课堂动手练习)GPT-4o识别统计分析图并生成对应画图的代码 5.(课堂动手练习)GPT-4o识别图片中的表格数据并保存 6.(课堂动手练习)GPT-4o识别图片中的公式并进行编辑 7.(课堂动手练习)利用GPT-4o完成全自动数据分析、绘图、建模 8.(课堂动手练习)利用GPT-4o连接论文数据库 |
第十三章:最新绘图工具DALL-E3的医学绘图应用 | 1.(课堂动手练习)DALL-E3模型介绍2.(课堂动手练习)DALL-E3与GPT4结合使用 3.(课堂动手练习)DALL-E3中文提示词的使用 4.(课堂动手练习)DALL-E3根据上下文内容修改图片 5.(课堂动手练习)DALL-E3在图像中生成特定文字 6.(课堂动手练习)DALL-E3绘图结果的不断优化 |
第十四章:不会写代码也能成为医学领域编程高手 | 1.(课堂动手练习)利用AI实现某一特定功能的程序 2.(课堂动手练习)利用AI对代码进行解释 3.(课堂动手练习)利用AI进行代码纠错及修改 4.(课堂动手练习)利用AI回答代码疑问 5.(课堂动手练习)利用AI帮你优化代码 6.(课堂动手练习)利用AI读取本地医学数据然后写代码 7.(课堂动手练习)利用AI帮你提供完整项目代码并不断修正代码 8.(课堂动手练习)自动化AI编程助手介绍 |
第十五章:python基础学习 | 1.python的应用场景 2.(课堂动手练习)python环境安装配置 3.(课堂动手练习)print使用 4.(课堂动手练习)运算符和变量 5.(课堂动手练习)循环 6.(课堂动手练习)列表元组字典 7.(课堂动手练习)if条件 8.(课堂动手练习)函数 9.(课堂动手练习)模块 10.(课堂动手练习)类的使用 11.(课堂动手练习)文件读写 12.(课堂动手练习)异常处理 |
第十六章:科学计算模块Numpy和绘图模块Matplotlib学习 | 1. (课堂动手练习)numpy的属性 2. (课堂动手练习)创建array 3. (课堂动手练习)numpy的运算 4. (课堂动手练习)随机数生成以及矩阵的运算 5. (课堂动手练习)numpy的索引 6. (课堂动手练习)Matplotlib基础用法 7. (课堂动手练习)figure图像 8. (课堂动手练习)设置坐标轴 9. (课堂动手练习)legend图例 10. (课堂动手练习)scatter散点图 |
第十七章:人工智能概念详解 | 1.人工智能/机器学习/神经网络/深度学习 2.训练集/验证集/测试集介绍 3.监督学习/无监督学习/自监督学习 4.分类应用/回归应用/聚类应用 5.人工智能各种常见应用 6.AI算法是如何进行训练的 7.深度学习常用架构介绍 |
第十八章:数据特征工程 | 1.特征工程的意义 2.缺失值填充方法 3.数字类型特征处理 4.多值有序特征和多值无序特征处理 5.特征筛选方法 6.数据标准化和归一化处理 |
第十九章:机器学习常用算法 | 1.各种回归算法介绍与使用 2.各种分类算法介绍与使用 3.各种聚类算法介绍与使用 4.LightGBM算法介绍与使用 5.所有的机器学习算法使用技巧总结分析 6.(课堂动手练习)使用回归算法完成医学成本预测 7.(课堂动手练习)使用多种算法完成乳腺癌预测 |
第二十章:糖尿病预测案例在科研论文中的应用(课堂动手练习) | 1.相关论文内容解读,并分析该项目如何应用于论文写作 2. 项目简介 - 目标定义:开发一个预测糖尿病的机器学习模型,基于患者的医疗指标数据来预测其是否患有糖尿病 3. 数据预处理 - 数据加载:载入糖尿病数据集,并初步查看数据结构和基本统计信息 - 数据清洗:识别并处理数据集中的异常值和缺失值。使用适当的方法填充缺失值(例如,均值填充) - 特征工程:分析各特征与糖尿病结果的关系。选择合适的特征进行模型训练 4. 探索性数据分析 - 利用Seaborn的pairplot绘制不同特征之间的关系 - 绘制热力图分析特征之间的相关性 5. 模型构建与训练 - 选择模型:选择多个分类算法(如K-近邻、逻辑回归、神经网络、决策树、随机森林等)进行比较 6. 模型评估与优化 - 结果可视化:使用条形图展示不同模型的性能比较 - 模型解释:使用SHAP值解释模型的预测结果,以了解哪些特征对模型预测结果影响最大 7. 项目总结 - 评估模型表现:综合评估模型的准确性和可解释性 - 讨论与改进:基于模型表现,讨论可能的改进方法和实际应用中的潜在挑战 |
第二十一章:深度学习算法基础 | 1.单层感知器 2.激活函数,损失函数和梯度下降法 3.BP算法介绍 4.梯度消失问题 5.多种激活函数介绍 |
第二十二章:深度学习算法-卷积神经网络CNN应用 | 1.CNN卷积神经网络 2.卷积的局部感受野,权值共享介绍。 3.卷积的具体计算方式 4.池化层介绍(均值池化、最大池化) 5.same padding和valid padding介绍 6.LeNET-5卷积网络介绍 7.(课堂动手练习)医学识别案例 |
第二十三章:深度学习算法-长短时记忆网络LSTM应用 | 1.RNN循环神经网络介绍 2.RNN具体计算分析 3.长短时记忆网络LSTM介绍 4.输入门,遗忘门,输出门具体计算分析 5.堆叠LSTM介绍 6.双向LSTM介绍 7.(课堂动手练习)使用LSTM进行医学时间序列数据的分析 |
第二十四章:基于深度学习模型的图像识别(医学影像案例) | 1.VGG16模型详解 2.ResNet模型详解 3.EfficientNet模型详解 4.(课堂动手练习)下载训练好的1000分类图像识别模型 5.(课堂动手练习)使用训练好的图像识别模型进行各种图像分类 6.(课堂动手练习)使用迁移学习训练疟疾细胞图像分类模型 |
第二十五章:医学领域中的AI项目汇总介绍 | 1.甲状腺图像分级 目标:开发一个深度学习模型,基于图像数据自动对甲状腺病变进行分级。 技术:使用预训练CNN模型和自定义顶层网络进行图像分类。 成果:模型能有效区分不同级别的甲状腺病变,并在测试集上表现出高准确率。 2.糖尿病预测项目 目标:利用机器学习算法预测个体是否将发展成糖尿病,基于患者的医疗指标数据。 技术:应用多种机器学习分类算法,并通过交叉验证方法评估模型性能。 成果:选定最佳模型,实现高准确率预测,并对模型预测结果提供解释。 3.心脏病预测项目 目标:使用临床数据预测个体是否患有心脏病。 技术:数据预处理,特征工程,和多模型评估。 成果:建立了具有良好准确率和解释性的预测模型。 4.乳腺癌预测项目 目标:开发一个模型预测乳腺癌的可能性,基于患者的医疗指标。 技术:分析数据,选择合适的机器学习算法进行模型训练。 成果:模型能够以高准确性预测乳腺癌,帮助早期诊断。 5.基因序列能量预测 目标:预测蛋白质结构的能量,基于其氨基酸序列。 技术:利用深度学习模型如LSTM处理序列数据。 成果:模型准确地预测蛋白质结构能量,助力生物医学研究。 |
辅助课程 | 1.课程总结及技术发展展望。 2.建立信群答疑群(课后提供终身免费答疑,提供一对一答疑) 3.配备AIGC/GPT/AI绘图/等教材,课后逐步提高能力。 |
培训收费有三类,请您按自身需要灵活选择。
1、学生凭学生证优惠300元;
2、2人以上(含)团体报名每人可减少200元;
3、3人以上(含)团体报名每人可减少300元;
4、4人以上(含)团体报名每人可减少400元;
5、5人以上(含)团体报名,另外赠送一个名额;
6、以上优惠政策不能同时享受,只能享受其中一种。
报名咨询联系人:(蔡老师)
其他课程推荐: