204B实战应用-LMK04821代码详解(二)
一、 SPI协议
通过阅读LMK04821数据手册,我们可以从中知道,可以通过SPI协议对LMK04821进行寄存器的配置工作,进而实现我们设计所需要的功能。
SPI协议部分,咱们可以用3线,或者4线,在本次设计中,使用3线。关于SPI的时序部分,这儿就不再赘述,手册里面都有详细的描述。
二、 SPI寄存器配置模块设计
图2
如图2所示,就是配置LMK04821存器的单元,信号定义如下:
1、cfg_clk:系统时钟;
2、cfg_rst:系统复位;
3、通过VIO控制的信号,这组信号存在的目的在于方便检测自己配置寄存器的正确性。
vio_cfg_en:配置寄存器使能信号;
vio_cfg_wr:配置寄存器读写使能,0写1读;
vio_cfg_addr:配置的寄存器地址;
vio_cfg_wdata:寄存器中配置的值;
addr_118_data:预留信号,模块中没有用;
我们在配置LMK04821寄存器时,要验证配置寄存器操作是否正确,就要有写有读,在对应的寄存器内写入对应的数值,然后进行读操作,观察正确性。本次设计是在vivado环境下进行设计,通过添加VIO的IP核,来控制读写操作。同时,添加ILA配合VIO来进行读写数据操作的观测。别的开发环境下思路一样。
该组信号仅在回读寄存器时使用,目的是为了验证寄存器读写正确性。
图3
4、lmk_rst:LMK04821复位信号,用于复位LMK04821,直接和LMK04821芯片相连;
5、3线制SPI信号:
lmk_spi_csn:片选;
lmk_spi_sdio:数据;
lmk_spi_clk:时钟;
6、可编程管教:主要和LMK04821内部的PLL相关,本次设计中默认为0;
lmk_clk_sel0 :sel0;
lmk_clk_sel1 :sel1;
三、 SPI数据buffer定义
在本次设计中,SPI配置数据buffer,data_reg为24bit,r_w占1bit,箭头1所指包含W1、W2以及地址位占13bit,具体见SPI时序图;箭头2所指数据位8bit。
图4
根据图5我们可以知道,要配置LMK04821我们需要配置126个寄存器,这126个寄存器来源参见第一章实战记录。
其中,126个寄存器包含必须要配的寄存器、一些无关紧要的寄存器、以及功能实现所需要的寄存器等,有些寄存器需要配置多次。
图5
四、 SPI时序实现
设计中,我们需要按照顺序配置126个寄存器,也就是说SPI要执行126次。因此,在代码实现过程中,注意寄存器配置的顺序,并且保证每个寄存器都准确无误的配置完成,才能进行下一个寄存器的配置。如果在设计中,要求LMK004821实现不同的功能,当配置的寄存器个数不一致时,在v文件中更改图6所示的参数即可。
图6
如下:是LMK04821配置的模块,读者可以作为参考。
代码区(参考代码):
//###########################################################################//
// Copyright (C) 2017, JSZX, Co. Ltd. All Rights Reserved.
//###########################################################################//
//-- Project Name :
//-- File Name : lmk04821_spi
//-- Description :
//###########################################################################//
//---------------------------Modification History----------------------------//
//-- Date By Ver Comment
//-- 12/04/2017 hhh 1.0 Create new
//===================================================================
//-- End Revision
//===================================================================
`timescale 1ns / 1ps
module lmk04821_spi(
input cfg_clk , //<=10MHz
input cfg_rst ,
input vio_cfg_en ,
input vio_cfg_wr ,//0,write;1,read;
input [12:0] vio_cfg_addr ,
input [07:0] vio_cfg_wdata ,
input [07:0] addr_118_data ,
input r_w ,
input lmk_cfgen ,
output lmk_rst ,
output lmk_spi_csn ,
inout tri lmk_spi_sdio ,
output lmk_spi_clk ,
output lmk_clk_sel0 ,
output lmk_clk_sel1 ,
output reg regdatareadvalid ,
output reg [7:0] regdataread ,
output reg lmk_cfgdone = 1'b0
);
//parameter defination
parameter NUM_REG = 8'd126 ;//需要配置的寄存器个数
parameter CFG_DONE_DLY = 32'hF4240 ;//100ms@10Mhz;
//====================================================================//
//----------------------internal signals------------------------------//
//====================================================================//
reg [00:0] lmk_cfgen_d0 ;
reg [00:0] lmk_cfgen_d1 ;
reg [00:0] lmk_cfgen_d2 ;
reg [00:0] vio_cfg_en_d0 ;
reg [00:0] vio_cfg_en_d1 ;
reg [00:0] vio_cfg_en_d2 ;
reg [07:0] cnt_clk ;// 每个寄存器需要的时钟数计数器
reg [07:0] cnt_reg ;// 需要配置的寄存器计数器,最多255个!
reg [23:0] data_reg ;
reg [00:0] load_p ;
reg [00:0] load_p_d0 ;
reg [35:0] mid_data_o ;
reg [35:0] mid_csn_o ;
reg [00:0] spi_sdo ;
reg [00:0] spi_cs_n ;
wire[00:0] spi_sdi ;
reg [05:0] sdo_cnt ;
// //====================================================================//
// //-----------------------------ila debug------------------------------//
// //====================================================================//
// //ila_spi
// ila_spi ila_spi(
// .clk ( cfg_clk ),
//
// .probe0 ( cnt_clk ),//8
// .probe1 ( cnt_reg ),//8
// .probe2 ( data_reg ),//24
// .probe3 ( load_p ),//1
// .probe4 ( sdo_cnt ),//6
// .probe5 ( spi_cs_n ),//1
// .probe6 ( spi_sdi ),//1
// .probe7 ( spi_sdo ),//1
// .probe8 ( lmk_cfgen_d1 ) //1
// );
//====================================================================//
//--------------------------main process------------------------------//
//====================================================================//
//lmk_clk_sel
assign lmk_clk_sel0= 1'b0 ;
assign lmk_clk_sel1= 1'b0 ;
//spi signals;
assign lmk_rst = cfg_rst ;
assign lmk_spi_clk = (spi_cs_n) ? 1'b0 : ~cfg_clk ;
assign lmk_spi_csn = spi_cs_n ;
assign spi_sdi = lmk_spi_sdio;
assign lmk_spi_sdio= (data_reg[23]==1'b1 && sdo_cnt>6'h18)? 1'bz : spi_sdo ;
//lmk_cfgen_d0/lmk_cfgen_d1/lmk_cfgen_d2/load_p_d0
always @(posedge cfg_clk or posedge cfg_rst)
begin
if(cfg_rst==1'b1)
begin
lmk_cfgen_d0 <= 1'b0 ;
lmk_cfgen_d1 <= 1'b0 ;
lmk_cfgen_d2 <= 1'b0 ;
load_p_d0 <= 1'b0 ;
vio_cfg_en_d0 <= 1'b0 ;
vio_cfg_en_d1 <= 1'b0 ;
vio_cfg_en_d2 <= 1'b0 ;
end
else
begin
lmk_cfgen_d0 <= lmk_cfgen ;
lmk_cfgen_d1 <= lmk_cfgen_d0 ;
lmk_cfgen_d2 <= lmk_cfgen_d1 ;
load_p_d0 <= load_p ;
vio_cfg_en_d0 <= vio_cfg_en ;
vio_cfg_en_d1 <= vio_cfg_en_d0 ;
vio_cfg_en_d2 <= vio_cfg_en_d1 ;
end
end
//load_p/cnt_reg/cnt_clk
always @(posedge cfg_clk or posedge cfg_rst)
begin
if(cfg_rst==1'b1)
begin
cnt_reg <= 8'd0 ;
cnt_clk <= 8'd36 ;
load_p <= 1'b0 ;
end
else
begin
if(lmk_cfgen_d1==1'b1 && lmk_cfgen_d2==1'b0)
begin
cnt_clk <= 8'd0 ;
cnt_reg <= 8'd0 ;
load_p <= 1'b0 ;
end
else if((cnt_clk==8'd36)&&(cnt_reg<NUM_REG))
begin
cnt_clk <= 8'd0 ;
cnt_reg <= cnt_reg + 8'h1 ;
load_p <= 1'b1 ;
end
else
begin
load_p <= 1'b0 ;
if(cnt_clk==8'd36)//cnt_reg==NUM_REG
begin
cnt_clk <= 8'd0 ;
cnt_reg <= cnt_reg ;
end
else
begin
cnt_clk <= cnt_clk + 8'h1 ;
cnt_reg <= cnt_reg ;
end
end
end
end
//data_reg:VCO0,1930~2075;VCO1,2920~3080;
always @(posedge cfg_clk or posedge cfg_rst)
begin
if(cfg_rst==1'b1)
begin
data_reg <= 24'h80_0000;
end
else
begin
case(cnt_reg)//VCO_2Ghz;
// Serial Port Configuration
8'd1 : data_reg <= {r_w,23'h0000_80} ;//soft reset
8'd2 : data_reg <= {r_w,23'h0000_00} ;//
8'd3 : data_reg <= {r_w,23'h0100_04} ;//500Mhz;DCLKout0: input and output drive level;device clock out divider values
8'd4 : data_reg <= {r_w,23'h0101_55} ;//controls the digital delay high and low count values for the device clock outputs
8'd5 : data_reg <= {r_w,23'h0103_00} ;//registers control the analog delay properties for the device clocks
8'd6 : data_reg <= {r_w,23'h0104_22} ;//set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay,and half step
8'd7 : data_reg <= {r_w,23'h0105_00} ;//set the analog delay parameters for the SYSREF outputs
8'd8 : data_reg <= {r_w,23'h0106_70} ;//controls the power down functions for the digital delay, glitchless half step
8'd9 : data_reg <= {r_w,23'h0107_15} ;//configure the output polarity, and format:11:LVDS;15:LVPECL16;
8'd10 : data_reg <= {r_w,23'h0108_10} ;//125Mhz;DCLKout2;V7_IO_CLK2;
8'd11 : data_reg <= {r_w,23'h0109_55} ;
8'd12 : data_reg <= {r_w,23'h010B_00} ;
8'd13 : data_reg <= {r_w,23'h010C_22} ;//bit[5]:SDCLKoutY_MUX;0, Device clock output;
8'd14 : data_reg <= {r_w,23'h010D_00} ;
8'd15 : data_reg <= {r_w,23'h010E_70} ;//bit[3]:0,enable;bit[4]:powerdown;
8'd16 : data_reg <= {r_w,23'h010F_11} ;//11:LVDS;15:LVPECL16
8'd17 : data_reg <= {r_w,23'h0110_10} ;//125Mhz;DCLKout4;
8'd18 : data_reg <= {r_w,23'h0111_55} ;
8'd19 : data_reg <= {r_w,23'h0113_00} ;
8'd20 : data_reg <= {r_w,23'h0114_22} ;//bit[5]:SDCLKoutY_MUX;0, Device clock output;
8'd21 : data_reg <= {r_w,23'h0115_00} ;
8'd22 : data_reg <= {r_w,23'h0116_70} ;//bit[3]:0,enable;bit[4]:powerdown;
8'd23 : data_reg <= {r_w,23'h0117_11} ;//11:LVDS;15:LVPECL16
8'd24 : data_reg <= {r_w,23'h0118_04} ;//500Mhz;DCLKout6,FPGA;V7_IO_CLK0;
8'd25 : data_reg <= {r_w,23'h0119_55} ;
8'd26 : data_reg <= {r_w,23'h011B_00} ;
8'd27 : data_reg <= {r_w,23'h011C_22} ;//bit[5]:SDCLKoutY_MUX;0, Device clock output;
8'd28 : data_reg <= {r_w,23'h011D_00} ;
8'd29 : data_reg <= {r_w,23'h011E_70} ;
8'd30 : data_reg <= {r_w,23'h011F_11} ;//11:LVDS;15:LVPECL16
8'd31 : data_reg <= {r_w,23'h0120_10} ;//125Mhz;DCLKout8,FPGA MGT114 CLOCK;
8'd32 : data_reg <= {r_w,23'h0121_55} ;
8'd33 : data_reg <= {r_w,23'h0123_00} ;
8'd34 : data_reg <= {r_w,23'h0124_02} ;//bit[5]:SDCLKoutY_MUX;0, Device clock output;
8'd35 : data_reg <= {r_w,23'h0125_00} ;
8'd36 : data_reg <= {r_w,23'h0126_70} ;
8'd37 : data_reg <= {r_w,23'h0127_11} ;//11:LVDS;15:LVPECL16
8'd38 : data_reg <= {r_w,23'h0128_10} ;//125Mhz;DCLKout10,FPGA MGT116 CLOCK;
8'd39 : data_reg <= {r_w,23'h0129_55} ;
8'd40 : data_reg <= {r_w,23'h012B_00} ;
8'd41 : data_reg <= {r_w,23'h012C_02} ;//bit[5]:SDCLKoutY_MUX;0, Device clock output;
8'd42 : data_reg <= {r_w,23'h012D_00} ;
8'd43 : data_reg <= {r_w,23'h012E_70} ;
8'd44 : data_reg <= {r_w,23'h012F_11} ;//11:LVDS;15:LVPECL16
8'd45 : data_reg <= {r_w,23'h0130_04} ;//500Mhz;DCLKout12;
8'd46 : data_reg <= {r_w,23'h0131_55} ;
8'd47 : data_reg <= {r_w,23'h0133_00} ;
8'd48 : data_reg <= {r_w,23'h0134_22} ;
8'd49 : data_reg <= {r_w,23'h0135_00} ;
8'd50 : data_reg <= {r_w,23'h0136_70} ;
8'd51 : data_reg <= {r_w,23'h0137_15} ;//11:LVDS;15:LVPECL16
8'd52 : data_reg <= {r_w,23'h0138_00} ;//selects the clock distribution source, and OSCout parameters;VCO0;
8'd53 : data_reg <= {r_w,23'h0139_03} ;//sets the source for the SYSREF outputs
8'd54 : data_reg <= {r_w,23'h013A_00} ;//SYSREF_DIV[12:8] DIV register 1;sysref 2000M/160=12.5Mhz;
8'd55 : data_reg <= {r_w,23'h013B_A0} ;//SYSREF_DIV[7:0] DIV register 0;
8'd56 : data_reg <= {r_w,23'h013C_08} ;//set the delay of the SYSREF digital delay value[12:8]
8'd57 : data_reg <= {r_w,23'h013D_00} ;//set the delay of the SYSREF digital delay value[7:0]
8'd58 : data_reg <= {r_w,23'h013E_03} ;//sets the number of SYSREF pulses if SYSREF is not in continuous mode;
8'd59 : data_reg <= {r_w,23'h013F_04} ;//controls the feedback feature
8'd60 : data_reg <= {r_w,23'h0140_01} ;//13-OSCin PD; powerdown controls for OSCin and SYSREF functions;bit[0]:Powerdown SYSREF pulse generator;
8'd61 : data_reg <= {r_w,23'h0141_FF} ;//enables dynamic digital delay for enabled device clocks
8'd62 : data_reg <= {r_w,23'h0142_00} ;//sets the number of dynamic digital delay adjustments occur
8'd63 : data_reg <= {r_w,23'h0143_91} ;//sets general SYNC parameters such as polarization, and mode
8'd64 : data_reg <= {r_w,23'h0144_00} ;//prevent a clock output from being synchronized or interrupted by a SYNC event or when outputting SYSREF
8'd65 : data_reg <= {r_w,23'h0145_7F} ;//Always program this register to value 127
8'd66 : data_reg <= {r_w,23'h0171_AA} ;//
8'd67 : data_reg <= {r_w,23'h0172_02} ;//
8'd68 : data_reg <= {r_w,23'h0173_00} ;//bit[6]PLL2_PRE_PD; bit[5]PLL2_PD;
8'd70 : data_reg <= {r_w,23'h017C_15} ;//OPT_REG_1:21;
8'd71 : data_reg <= {r_w,23'h017D_33} ;//OPT_REG_2:51;
8'd72 : data_reg <= {r_w,23'h0182_00} ;
8'd73 : data_reg <= {r_w,23'h0183_00} ;
8'd74 : data_reg <= {r_w,23'h0184_00} ;
8'd75 : data_reg <= {r_w,23'h0185_00} ;
8'd76 : data_reg <= {r_w,23'h0188_00} ;
8'd77 : data_reg <= {r_w,23'h0146_38} ;//CLKin enable and type controls.
8'd78 : data_reg <= {r_w,23'h0147_02} ;//CLKin_SEL_MODE. pin select mode;
8'd79 : data_reg <= {r_w,23'h0148_02} ;//CLKin_SEL0 controls
8'd80 : data_reg <= {r_w,23'h0149_42} ;//CLKin_SEL1 controls and register readback SDIO pin type
8'd81 : data_reg <= {r_w,23'h014A_02} ;//contains control of the RESET pin
8'd82 : data_reg <= {r_w,23'h014B_16} ;//contains the holdover functions:start;
8'd83 : data_reg <= {r_w,23'h014C_00} ;//
8'd84 : data_reg <= {r_w,23'h014D_00} ;//
8'd85 : data_reg <= {r_w,23'h014E_C0} ;//
8'd86 : data_reg <= {r_w,23'h014F_7F} ;//
8'd87 : data_reg <= {r_w,23'h0150_03} ;//
8'd88 : data_reg <= {r_w,23'h0151_02} ;//
8'd89 : data_reg <= {r_w,23'h0152_00} ;//contains the holdover functions:end;
8'd90 : data_reg <= {r_w,23'h0153_00} ;//CLKin0_R[13:8]
8'd91 : data_reg <= {r_w,23'h0154_01} ;//CLKin0_R[7:0]
8'd92 : data_reg <= {r_w,23'h0155_00} ;//CLKin1_R[13:8]
8'd93 : data_reg <= {r_w,23'h0156_40} ;//CLKin1_R[7:0]
8'd94 : data_reg <= {r_w,23'h0157_00} ;//CLKin2_R[13:8]
8'd95 : data_reg <= {r_w,23'h0158_40} ;//CLKin2_R[7:0]
8'd96 : data_reg <= {r_w,23'h0159_00} ;//PLL1_N[13:8]
8'd97 : data_reg <= {r_w,23'h015A_01} ;//PLL1_N[7:0]
8'd98 : data_reg <= {r_w,23'h015B_D4} ;//PLL1 phase detector
8'd99 : data_reg <= {r_w,23'h015C_20} ;//PLL1_DLD_CNT[13:8]
8'd100 : data_reg <= {r_w,23'h015D_00} ;//PLL1_DLD_CNT[7:0]
8'd101 : data_reg <= {r_w,23'h015E_00} ;//contains the delay value for PLL1 N and R delays.
8'd102 : data_reg <= {r_w,23'h015F_0B} ;//configures the PLL1 LD pin
8'd103 : data_reg <= {r_w,23'h0160_00} ;//PLL2_R[11:8]
8'd104 : data_reg <= {r_w,23'h0161_01} ;//PLL2_R[7:0]
8'd105 : data_reg <= {r_w,23'h0162_44} ;//sets other PLL2 functions:[7:5]:PLL2_P;[4:2]:OSCin_FREQ;[1]:PLL2_XTAL_EN;[0]:PLL2_REF_2X_EN;
8'd106 : data_reg <= {r_w,23'h0163_00} ;//PLL2_N_CAL[17:16]
8'd107 : data_reg <= {r_w,23'h0164_00} ;//PLL2_N_CAL[15:8]
8'd108 : data_reg <= {r_w,23'h0165_0C} ;//PLL2_N_CAL[7:0]
8'd109 : data_reg <= {r_w,23'h0166_00} ;//PLL2_N[17:16],MSB;
8'd110 : data_reg <= {r_w,23'h0167_00} ;//PLL2_N[15:8],---;
8'd111 : data_reg <= {r_w,23'h0168_0A} ;//PLL2_N[7:0],LSB;
8'd112 : data_reg <= {r_w,23'h0169_59} ;//controls the PLL2 phase detector
8'd113 : data_reg <= {r_w,23'h016A_60} ;//
8'd114 : data_reg <= {r_w,23'h016B_00} ;//
8'd115 : data_reg <= {r_w,23'h016C_00} ;//
8'd116 : data_reg <= {r_w,23'h016D_00} ;//
8'd117 : data_reg <= {r_w,23'h016E_13} ;//
8'd118 : data_reg <= {r_w,23'h0143_90} ;//
8'd119 : data_reg <= {r_w,23'h0139_00} ;//
8'd120 : data_reg <= {r_w,23'h0143_B0} ;//
8'd121 : data_reg <= {r_w,23'h0143_90} ;//
8'd122 : data_reg <= {r_w,23'h0144_FF} ;//
8'd123 : data_reg <= {r_w,23'h0143_10} ;//
8'd124 : data_reg <= {r_w,23'h0143_11} ;//
8'd125 : data_reg <= {r_w,23'h0139_03} ;//
8'd126 : data_reg <= {1'b1,23'h0002_00} ;//
default : data_reg <= 24'h80_0000 ;
endcase
end
end
//spi_sdo/spi_cs_n/mid_data_o/mid_csn_o/mid_data_o/vio_cfg_cnt
always @(posedge cfg_clk or posedge cfg_rst)
begin
if(cfg_rst==1'b1)
begin
spi_sdo <= 1'b0;
spi_cs_n <= 1'b1;
mid_data_o <= 36'h0;
mid_csn_o <= 36'hFFFFFFFFF;
sdo_cnt <= 6'b0 ;
end
else
begin
if(load_p_d0==1'b1)
begin
spi_sdo <= 1'b0;
mid_data_o <= {data_reg[23:0],12'hfff};//r_w:0 write;1 read;
spi_cs_n <= 1'b1;
mid_csn_o <= {24'h0,12'hFFF};
sdo_cnt <= 6'h1 ;
end
else if(vio_cfg_en_d1==1'b1 && vio_cfg_en_d2==1'b0)
begin
spi_sdo <= 1'b0;
mid_data_o <= {vio_cfg_wr,2'b00,vio_cfg_addr,vio_cfg_wdata,12'hfff};//r_w:0 write;1 read;
spi_cs_n <= 1'b1;
mid_csn_o <= {24'h0,12'hFFF};
sdo_cnt <= 6'h1 ;
end
else
begin
spi_sdo <= mid_data_o[35];
mid_data_o <= {mid_data_o[34:0],1'b0};
spi_cs_n <= mid_csn_o[35];
mid_csn_o <= {mid_csn_o[34:0],1'b1};
if(sdo_cnt<6'h3f)
begin
sdo_cnt <= sdo_cnt + 6'h1 ;
end
else
begin
sdo_cnt <= sdo_cnt ;
end
end
end
end
//regdatareadvalid/regdataread
always @(posedge cfg_clk or posedge cfg_rst)
begin
if(cfg_rst==1'b1)
begin
regdatareadvalid <= 1'b0 ;
regdataread <= 8'b0 ;
end
else
begin
if(spi_cs_n==1'b0)
begin
if(data_reg[23]==1'b1)
begin
if(sdo_cnt>6'd18 && sdo_cnt<6'd25)//2-17;18-25;
begin
regdatareadvalid <= 1'b0 ;
regdataread <= {regdataread[6:0],spi_sdi};
end
else if(sdo_cnt==6'd25)
begin
regdatareadvalid <= 1'b1 ;
regdataread <= {regdataread[6:0],spi_sdi};
end
else
begin
regdatareadvalid <= 1'b0 ;
regdataread <= regdataread ;
end
end
else
begin
regdatareadvalid <= 1'b0 ;
regdataread <= regdataread ;
end
end
else
begin
regdatareadvalid <= 1'b0 ;
regdataread <= regdataread ;
end
end
end
//lmk_cfgdone
always @(posedge cfg_clk or posedge cfg_rst)
begin
if(cfg_rst)
begin
lmk_cfgdone <= 1'b0 ;
end
else
begin
if(cnt_reg>=NUM_REG)
begin
lmk_cfgdone <= 1'b1 ;
end
else
begin
lmk_cfgdone <= 1'b0 ;
end
end
end
//====================================================================//
//------------------------------- end ------------------------------//
//====================================================================//
endmodule
下一篇,将详细介绍jesd_204B IP核应用的相关知识,各位大侠,尽请关注。
往期精选
FPGA技术江湖广发江湖帖
无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。
FPGA技术江湖微信交流群
加群主微信,备注姓名+学校/公司+专业/岗位进群
FPGA技术江湖QQ交流群
备注姓名+学校/公司+专业/岗位进群