基金资助:北京市自然科学基金项目(4222011);
王莹,袁野,陈源彬:北京邮电大学网络与交换技术国家重点实验室
摘要:多输入多输出(MIMO)技术的不断演进展现出更大阵列孔径尺寸和更密集阵列元件排列的特性,衍生出超大规模MIMO、全息MIMO和超大规模智能超表面等技术,统称为新形态MIMO。随着通信系统从第5代向第6代移动通信系统(6G)的发展,其工作频段正在从传统的微波频段向毫米波、太赫兹等更高频段拓展,新形态MIMO的双重演进特性导致瑞利距离显著扩张,使得近场因素变得不可忽视。针对不同类型的新形态MIMO,从远场与近场信道建模、近场信道估计和波束赋形方案等方面展开综述,并介绍各种方案的技术特点。最后,探讨了新形态MIMO的未来研究方向,展示了其在增强6G移动通信系统性能方面的潜力。
关键词:新形态MIMO;信道建模;信道估计;波束赋型;
参考文献
[1]ZHANG Z Q, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28-41.
[2]CHEN S Z, LIANG Y C, SUN S H, et al. Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed[J]. IEEE Wireless Communications, 2020, 27(2): 218-228.
[3]ITU-R. Framework and overall objectives of the future development of IMT for 2030 and beyond [EB/OL]. [2023-11-13]. https://www.itu.int/rec/R-REC-M.2160/e
[4]SAAD W, BENNIS M, CHEN M Z. A vision of 6G wireless systems: applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134-142.
[5]倪善金, 沈亮, 宁珊,等. 6G无线通信物理层关键技术[J]. 电信科学, 2023, 39(12): 1-18.
[6]BJÖRNSON E, ELDAR Y C, LARSSON E G, et al. Twenty-five years of signal processing advances for multiantenna communications: from theory to mainstream technology[J]. IEEE Signal Processing Magazine, 2023, 40(4): 107-117.
[7]PAULRAJ A J, GORE D A, NABAR R U, et al. An overview of MIMO communications - a key to gigabit wireless[J]. Proceedings of the IEEE, 2004, 92(2): 198-218.
[8]CHEN X M, LEI L, ZHANG H Z, et al. Large-scale MIMO relaying techniques for physical layer security: AF or DF?[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5135-5146.
[9]KUMAR V, AMUDALA D N, BUDHIRAJA R. Analysis and optimization of hardware impaired FD rician-faded mMIMO systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4216-4233.
[10]GUO X F, CHEN Y B, WANG Y. Compressed channel estimation for near-field XL-MIMO using triple parametric decomposition[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 15040-15045.
[11]丁瑞, 钱晓涵, 刘道华, 等. 超大规模MIMO信道测量建模研究综述[J]. 电讯技术, 2022, 62(7): 1014-1022.
[12]WU H C, CHEN Y B, MING Y, et al. Two-timescale beamforming optimization for downlink multi-user holographic MIMO surfaces[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4476-4481.
[13]CHEN Y B, WANG Y, WANG Z C, et al. Angular-distance based channel estimation for holographic MIMO[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(6): 1684-1702.
[14]潘时龙, 宗柏青, 唐震宙, 等. 面向6G的智能全息无线电[J]. 无线电通信技术, 2022, 48(1): 1-15.
[15]ADHIKARY A, MUNIR M S, RAHA A D, et al. Artificial intelligence framework for target oriented integrated sensing and communication in holographic MIMO[C]//NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, NJ: IEEE Press, 2023: 1-7.
[16]BJÖRNSON E, SANGUINETTI L, WYMEERSCH H, et al. Massive MIMO is a reality—what is next?[J]. Digital Signal Processing, 2019, 94: 3-20.
[17]安建成. 面向可重构智能表面的信道估计与被动波束赋形技术研究[D]. 成都: 电子科技大学, 2021.
[18]YU X, SHEN W Q, ZHANG R, et al. Channel estimation for XL-RIS-aided millimeter-wave systems[J]. IEEE Transactions on Communications, 2023, 71(9): 5519-5533.
[19]YANG S J, LYU W T, HU Z Z, et al. Channel estimation for near-field XL-RIS-aided mmWave hybrid beamforming architectures[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 11029-11034.
[20]LIU W, PAN C H, REN H, et al. Low-overhead beam training scheme for extremely large-scale RIS in near field[J]. IEEE Transactions on Communications, 2023, 71(8): 4924-4940.
[21]SHEN D C, DAI L L, SU X, et al. Multi-beam design for near-field extremely large-scale RIS-aided wireless communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(3): 1542-1553.
[22]ZHANG Z J, DAI L L. Pattern-division multiplexing for multi-user continuous-aperture MIMO[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2350-2366.
[23]XIE Z Y, LIU Y W, XU J Q, et al. Performance analysis for near-field MIMO: discrete and continuous aperture antennas[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2258-2262.
[24]WAN Z, ZHU J A, DAI L L. Can continuous aperture MIMO obtain more mutual information than discrete MIMO?[J]. IEEE Communications Letters, 2023, 27(12): 3185-3189.
[25]HONG W, JIANG Z H, YU C, et al. Multibeam antenna technologies for 5G wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6231-6249.
[26]GUO X F, CHEN Y B, WANG Y. Wireless beacon enabled hybrid sparse channel estimation for RIS-aided mmWave communications[J]. IEEE Transactions on Communications, 2023, 71(5): 3144-3160.
[27]CHEN Y B, WANG Y, WANG Z C, et al. Robust beamforming for active reconfigurable intelligent omni-surface in vehicular communications[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 3086-3103.
[28]3GPP. Study on channel modeling enhancements for 7-24GHz for NR[EB/OL]. [2023-12-13]. https://portal.3gpp.org/desktopmodules/WorkItem/WorkItemDetails.aspx?workitemId=1020081.
[29]BJÖRNSON E, DEMIR Ö T, SANGUINETTI L. A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces[C]//2021 55th Asilomar Conference on Signals, Systems, and Computers. Piscataway, NJ: IEEE Press, 2021: 105-112.
[30]CUI M Y, WU Z D, LU Y, et al. Near-field MIMO communications for 6G: fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2023, 61(1): 40-46.
[31]DE CARVALHO E, ALI A, AMIRI A, et al. Non-stationarities in extra-large-scale massive MIMO[J]. IEEE Wireless Communications, 2020, 27(4): 74-80.
[32]JIANG Y H, GAO F F. Electromagnetic channel model for near field MIMO systems in the half space[J]. IEEE Communications Letters, 2023, 27(2):706-710.
[33]PIZZO A, MARZETTA T, SANGUINETTI L. Holographic MIMO communications under spatially-stationary scattering[C]//2020 54th Asilomar Conference on Signals, Systems, and Computers. Piscataway, NJ: IEEE Press, 2020: 702-706.
[34]LU H Q, ZENG Y. Communicating with extremely large-scale array/surface: unified modeling and performance analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4039-4053.
[35]PIZZO A, SANGUINETTI L, MARZETTA T L. Fourier plane-wave series expansion for holographic MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6890-6905.
[36]PIZZO A, SANGUINETTI L, MARZETTA T L. Spatial characterization of electromagnetic random channels[J]. IEEE Open Journal of the Communications Society, 2022, 3: 847-866.
[37]DENG R Q, DI B Y, ZHANG H L, et al. Reconfigurable holographic surface: holographic beamforming for metasurface-aided wireless communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6255-6259.
[38]DI B Y. Reconfigurable holographic metasurface aided wideband OFDM communications against beam squint[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5099-5103.
[39]WEI X H, DAI L L. Channel estimation for extremely large-scale massive MIMO: far-field, near-field, or hybrid-field?[J]. IEEE Communications Letters, 2022, 26(1): 177-181.
[40]ZHANG J Y, BJÖRNSON E, MATTHAIOU M, et al. Prospective multiple antenna technologies for beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1637-1660.
[41]WANG Z, ZHANG J Y, AI B, et al. Uplink performance of cell-free massive MIMO with multi-antenna users over jointly-correlated Rayleigh fading channels[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7391-7406.
[42]DEMIR Ö T, BJÖRNSON E, SANGUINETTI L. Channel modeling and channel estimation for holographic massive MIMO with planar arrays[J]. IEEE Wireless Communications Letters, 2022, 11(5): 997-1001.
[43]ZHU Y F, GUO H Y, LAU V K N. Bayesian channel estimation in multi-user massive MIMO with extremely large antenna array[J]. IEEE Transactions on Signal Processing, 2021, 69: 5463-5478.
[44]CUI M Y, DAI L L. Channel estimation for extremely large-scale MIMO: far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663-2677.
[45]YUAN Z Q, ZHANG J H, JI Y L, et al. Spatial non-stationary near-field channel modeling and validation for massive MIMO systems[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 921-933.
[46]YUAN Y, CHEN Y B, GUO X F, et al. Near-field tracking with extremely large-scale RIS: a sparse learning approach[C]//2024 IEEE Wireless Communications and Networking Conference (WCNC). Dubai, United Arab Emirates, 2024: 1-6.
[47]LEI H, ZHANG J Y, XIAO H H, et al. Channel estimation for XL-MIMO systems with polar-domain multi-scale residual dense network[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1479-1484.
[48]YU W T, SHEN Y F, HE H T, et al. An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 761-776.
[49]RODRIGUES V C, AMIRI A, ABRÃO T, et al. Low-complexity distributed XL-MIMO for multiuser detection[C]//2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway, NJ: IEEE Press, 2020: 1-6.
[50]XU B K, WANG Z, XIAO H H, et al. Low-complexity precoding for extremely large-scale MIMO over non-stationary channels[C]//ICC 2023 - IEEE International Conference on Communications (ICC). Piscataway, NJ: IEEE Press, 2023: 6516-6522.
[51]AMIRI A, MANCHÓN C N, DE CARVALHO E. Uncoordinated and decentralized processing in extra-large MIMO arrays[J]. IEEE Wireless Communications Letters, 2022, 11(1): 81-85.
[52]AMIRI A, REZAIE S, MANCHÓN C N, et al. Distributed receiver processing for extra-large MIMO arrays: a message passing approach[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2654-2667.
[53]HE H T, KOSASIH A, YU X H, et al. GNN-enhanced approximate message passing for massive/ultra-massive MIMO detection[C]//2023 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway, NJ: IEEE Press, 2023: 1-6.
[54]SUN Z N, PU X M, SHAO S H, et al. A low complexity expectation propagation detector for extra-large scale massive MIMO[C]//2021 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway, NJ: IEEE Press, 2021: 746-751.
[55]WEI L, HUANG C W, ALEXANDROPOULOS G C, et al. Multi-user holographic MIMO surfaces: channel modeling and spectral efficiency analysis[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1112-1124.
[56]XU B K, ZHANG J Y, LI J X, et al. Jac-PCG based low-complexity precoding for extremely large-scale MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16811-16816.
[57]LIU F, CUI Y H, MASOUROS C, et al. Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728-1767.
[58]WANG H Z, XIAO Z Q, ZENG Y. Cramér-Rao bounds for near-field sensing with extremely large-scale MIMO[J]. IEEE Transactions on Signal Processing, 2024, 72: 701-717.
[59]WU Z D, CUI M Y, ZHANG Z J, et al. Distance-aware precoding for near-field capacity improvement in XL-MIMO[C]//2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). Piscataway, NJ: IEEE Press, 2022: 1-5.
[60]DE SOUZA J H I, FILHO J C M, AMIRI A, et al. QoS-aware user scheduling in crowded XL-MIMO systems under non-stationary multi-state LoS/NLoS channels[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7639-7652.
[61]LIN Y J, GAO Z P, DU H Y, et al. A unified blockchain-semantic framework for wireless edge intelligence enabled web 3.0[J]. IEEE Wireless Communications, 2024, 31(2): 126-133.
[62]陈慕涵, 郭佳佳, 李潇, 等. 基于深度学习的大规模MIMO信道状态信息反馈[J]. 物联网学报, 2020, 4(1): 33-44.
[63]阳析, 金石, 吕文俊, 等. 面向5G无线通信技术的Massive MIMO原型验证系统 [J]. 微波射频技术, 2015.
[64]张伟. 6G超大规模MIMO云化无线网络原型验证系统发布[EB/OJ]. 北京: 中国高新技术产业导报, 2024.