福建师范大学张章静教授、章锦丹副教授团队在Chin Chem Lett发表了题为Revealing a new doping mechanism of spiro-OMeTAD
with tBP participation through the introduction of radicals into HTM的论文,DOI: 10.1016/j.cclet.2024.110046.
【工作亮点】
由于空穴输运材料(HTM)材料本身性能不足,需要引入LiTFSI来提升性能,但又带来新的吸潮和分解的问题,为了解决的HTM吸湿性问题,在新型掺杂剂上已经有了一些成果。但HTM长期氧化问题和4-叔丁基吡啶(tBP)的挥发问题还需要进一步解决。本文利用双硫仑(TETD)来掺杂spiro-OMeTAD,并提出一种新的掺杂机制。由于TETD具有二硫键,在无氧条件下,TETD容易被活化生成活性硫,生成[spiro-OMeTAD•]+[SC(S)N(C2H5)2]-。因此,在这种情况下,Li+离子有机会在HTM薄膜中与tBP配位并相互固定。DFT计算表明,生成的产物中tBP与Li+和 TFSI−三者互相作用形成配位化合物时,反应能量最低(ΔE为-1.29 eV),与以往我们印象里的tBP不参与掺杂反应的机理过程不同,是一种新的掺杂机制。总之,在HTM中引入一种新的自由基,大大减少了由于环境依赖而导致的器件性能波动,并抑制了tBP的挥发,从而增强了长期稳定性。
【研究背景】
目前,传统的n-i-p型器件在使用二锂(三氟甲烷)磺酰亚胺盐(LiTFSI)和4-叔丁基吡啶类(tBP)掺杂spiro-OMeTAD作为空穴传输材料(HTM)时表现出最高的PCE。然而,这种HTM仍然存在损害器件性能和长期稳定性的问题。首先,基于TFSI-阴离子和spiro-OMeTAD+的相互作用,LiTFSI掺杂可以提高spiro-OMeTAD的电导率和空穴迁移率,但LiTFSI的吸湿性和Li+离子向钙钛矿的迁移会严重加速钙钛矿的分解。其次,由于LiTFSI在HTM溶液中分散不好,因此使用tBP来促进LiTFSI的溶解,减少相分离。但tBP由于沸点低,易蒸发,易使HTM层出现针孔,从而加速HTM的电导率和金属电极向钙钛矿的迁移。第三,HTM的掺杂过程通常是通过将薄膜长时间暴露在空气中(10-24h),等待氧气进入HTM薄膜并缓慢进入并扩散,这一过程高度依赖于环境因素。
目前,很多工作都致力于开发新的掺杂解决第一个问题,如鼓入二氧化碳,采用金属盐,质子离子液体,金属有机复合物或spiro-OMeTAD2•+ (TFSI–)2,都被用来取代氧化剂LiTFSI,同时,将1-十二硫醇引入LiTFSI掺杂spiro-OMeTAD中,成功地克服了吸湿性LiTFSI和长时间氧化处理的局限性。然而,这种掺杂通常需要添加挥发性tBP,或其他液体添加剂,而第二个问题仍然存在。需要一种简单的方法来同时解决HTM成分不稳定造成的上述限制,以提高HTM的稳定性和钙钛矿的稳定性。
在此,我们报道了一种新的spiro-OMeTAD掺杂策略,将工业上常用的橡胶硫化加速器双硫仑(C10H20N2S4,TETD),作为一种低成本添加剂引入HTM,以克服传统掺杂spiro-OMeTAD HTM的局限性。由于其分子中存在二硫键,TETD可以释放活性硫(在1min紫外光照后形成活性TETD),快速氧化spiro-OMeTAD,与相邻的钙钛矿能级更匹配,大大降低了由于依赖环境氧化而导致的器件性能波动性。在活性TETD存在的情况下,spiro-OMeTAD自由基通过形成[spiro-OMeTAD•]+[SC(S)N(C2H5)2]- 来稳定。在这种情况下,Li+、TFSI−和tBP这三个物种之间的相互作用产生有利的能量使Li+和TFSI−与tBP配位。因此,有效地抑制了tBP的挥发,增强了器件的长期稳定性。此外,TETD可以同时抑制LiTFSI的聚集和将Li+与C=S中S的孤对电子键合来减轻Li+的迁移。
【研究内容】
Fig. 1.
(a) Characterization of HTM with TETD-assisted oxidation. (b) Images of spiro-OMeTAD: LiTFSI solution
before and after active TETD addition. (c) Raman spectra and (d) UV-vis
absorption spectra and (e) EPR signals of pristine spiro-OMeTAD, spiro-OMeTAD
with original TETD or active TETD treatment. (f) XPS spectra (S
2p peak) of spiro-OMeTAD:TETD films before (original TETD) and
after (active TETD) UV treatment. (g) UPS spectra of HTM films (TiO2/perovskite/HTM)
and the corresponding energy levels diagram.Fig. 2. (a) AFM images of the surface of HTM films. (b) FTIR
spectra of TETD, LiTFSI and the mixture of the two compounds. Inset in
(b) is the possible interaction between LiTFSI and TETD. (c) C-Vcurves and (d) Dark I-V of devices with the structure
FTO/PEDOT:PSS/HTM/MoO3/Ag. (e) TRPL spectra of glass/PSK/HTM films.
(HTM is spiro-OMeTAD (with LiTFSI and tBP) w/ or w/o doped
original/active TETD).Fig. 3. (a)-(d) Cross-sectional SEM images of fresh (left)
and aging (right) PSC devices w/o (a and b) and w/ (c and d) active TETD.
(e) and (f) FTIR spectra of tBP doped spiro-OMeTAD and spiro-OMeTAD:TETDstored in a vacuum chamber. (g) Rct evolution of devices during 120 h (stored at 85 ℃ in N2), the Rct values are derived from EIS spectra with a
device structure of FTO/PEDOT:PSS/HTM/Ag.Scheme 1. (a) Reaction 1 and reaction 2 is the possible
mechanism of the doping of spiro-MeOTAD with activeTETD in the presence of LiTFSI and tBP.
(b) and (c) structures of the optimized [spiro-OMeTAD•]+[SC(S)N(C2H5)2]-and [Li(tBP)3]+[TFSI]-.Fig. 4. Photovoltaic performance of PSCs with various HTM.
(a) Photocurrent density-voltage (J-V) curves. (b) PCE distribution based on 18 devices. (c) IPCE and
integrated Jsc of pristine and active TETD-based devices. (d) Pb
4f core level and (e) I 3d core level XPS spectra for pristine HTM and HTM with
active TETD. (f)-(h) Long-term stability of pristine and active TETD-based
PSCs with 40-50% RH in the air (f), at 80 ℃ in an N2-filled glove box (g). The
original PCE of target sample are 22.45 and 22.18%, and for the control sample
are 20.10 and 20.02% respectively. (h) The stable steady-state power output of
unencapsulated devices under continuous illumination using the white light
light-emitting diode (LED) array (100 mW/cm2) in N2filled glove box. The original PCE is 22.41% and 20.1%, electric bias at -0.9V.