Solid state laser &ion laser

文摘   2024-11-29 11:55   浙江  


A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid such as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers (see Laser diode).


固态激光器是一种使用固体增益介质的激光器,而不是染料激光器中的液体或气体激光器中的气体。基于半导体的激光器也是固态的,但通常被认为是固态激光器的一个单独的类别(见激光二极管)。


Solid-state lasers are lasersbased on solid-state gain media such as crystals or glasses doped with rare earth or transition metal ions. Semiconductor lasers are also solid-state lasers, but they are not always meant with that term.

Ion-doped solid-state lasers (also sometimes called doped insulator lasers) can be made in the form of bulk lasers, fiber lasers, or other types of waveguide lasers.

Solid-state lasers may generate output powers between a few milliwatts and (in high-power versions) many kilowatts.

The first solid-state laser – and in fact the first of all lasers – was a pulsed ruby laser, demonstrated by Maiman in 1960 [1]. Later on, however, other solid-state gain media were preferred because of their superior performance. A major problem with ruby is its pronounced three-level nature.

固态激光器是基于固态增益介质的激光器,如掺杂稀土或过渡金属离子的晶体或玻璃。半导体激光器也是固态激光器,但并不总是指固态激光器。

离子掺杂固体激光器(有时也称为掺杂绝缘体激光器)可以以块状激光器、光纤激光器或其他类型的波导激光器的形式制成。

固态激光器的输出功率可能在几毫瓦到(大功率版本)几千瓦之间。

第一个固态激光器——实际上也是所有激光器中的第一个——是脉冲红宝石激光器,由梅曼在1960年[1]演示。后来,其他固态增益介质因其优越的性能而受到青睐。ruby的一个主要问题是它明显的三级特性。


Optical Pumping

Many solid-state lasers are optically pumped with flash lamps or arc lamps. Such pump sources are relatively cheap and can provide very high powers. However, they lead to a fairly low power efficiency, moderate lifetime, and strong thermal effects such as thermal lensing in the gain medium.

Laser diodes are now most often used for pumping solid-state lasers. Such diode-pumped solid-state lasers(DPSS lasers, also called all-solid-state lasers) have many advantages, in particular a compact setup, long lifetime, and often very good beam quality.

许多固态激光器是用闪光灯或弧光灯光泵浦的。这种泵源相对便宜,可以提供非常高的功率。然而,它们导致了相当低的功率效率,中等寿命和强的热效应,如热透镜在增益介质。

激光二极管现在最常用于抽运固体激光器。这种二极管泵浦固态激光器(DPSS激光器,也称为全固态激光器)有许多优点,特别是结构紧凑,寿命长,通常很好的光束质量。

Energy Storage 

The laser transitions of rare-earth or transition-metal-doped crystals or glasses are normally weakly allowed transitions, i.e., transitions with very low oscillator strength, which leads to long upper-state lifetimes and consequently to good energy storage, with upper-state lifetimes of microseconds to milliseconds. For example, a laser crystal pumped with 10 W of power and having an upper-state lifetime of 1 ms can store an energy of the order of 10 mJ.

能量储存
稀土或过渡金属掺杂晶体或玻璃的激光跃迁通常是弱允许的跃迁,即具有非常低的振荡器强度的跃迁,这导致了很长的高态寿命,从而产生良好的能量存储,高态寿命为微秒到毫秒。例如,一个泵浦功率为10 W的激光晶体,其高态寿命为1 ms,可以存储10 mJ量级的能量。

Although energy storage is beneficial for nanosecond pulse generation (see below), it can also lead to unwanted spikingphenomena in continuous-wave lasers, e.g. when the pump source is switched on.

虽然能量存储有利于纳秒脉冲产生(见下文),但它也会在连续波激光器中导致不必要的尖峰现象,例如当泵浦源打开时。

Pulse Generation 

The long upper-state lifetimes makes solid-state lasers very suitable for Q switching: the laser crystal can easily store an amount of energy which, when released in the form of a nanosecond light pulse, leads to a peak power which is orders of magnitude above the achievable average power. Bulk lasers can thus easily achieve millijoule pulse energies and megawatt peak powers.

In mode-locked operation, solid-state lasers can generate ultrashort pulses with durations measured in picoseconds or femtoseconds (minimum: ≈ 5 fs, achieved with Ti:sapphire lasers). Some passively mode-locked solid-state lasers have a tendency for Q-switching instabilities, but these can usually be suppressed with suitable measures.

脉冲的产生
固态激光器的超长寿命使其非常适合于Q开关:激光晶体可以轻松存储大量的能量,当以纳秒光脉冲的形式释放时,产生的峰值功率高于可实现的平均功率的数量级。块状激光器因此可以很容易地达到毫焦耳脉冲能量和兆瓦峰值功率。

在锁模工作中,固态激光器可以产生超短脉冲,持续时间以皮秒或飞秒为单位(Ti:蓝宝石激光器实现的最小值≈5fs)。一些被动锁模固态激光器有q开关不稳定性的趋势,但这些通常可以通过适当的措施加以抑制。

Wavelength Tuning

In terms of their potential for wavelength tuning, different types of solid-state lasers differ considerably. Most rare-earth-doped laser crystals, such as Nd:YAG and Nd:YVO4, have a fairly small gain bandwidth of the order of 1 nm or less, so that tuning is possible only within a rather limited range. On the other hand, tuning ranges of tens of nanometers and more are possible with rare-earth-doped glasses, and particularly with transition-metal-doped crystals such as Ti:sapphire, Cr:LiSAF and Cr:ZnSe (→ vibronic lasers).

波长调谐
就其波长调谐的潜力而言,不同类型的固态激光器差别很大。大多数稀土掺杂激光晶体,如Nd:YAG和Nd:YVO4,具有一个相当小的增益带宽,1 nm或更少,因此调谐只能在一个相当有限的范围内。另一方面,使用稀土掺杂玻璃,尤其是过渡金属掺杂晶体,如Ti:蓝宝石、Cr:LiSAF和Cr:ZnSe(→振动激光器),可以实现数十纳米甚至更多的调谐范围。

Typical Solid-state Lasers

Examples of different types of solid-state lasers are:

  • Small diode-pumped Nd:YAG (→ YAG lasers) or Nd:YVO4 lasers (→ vanadate lasers) often operate with output powers between a few milliwatts (for miniature setups) and a few watts.Q-switched versions generate pulses with durations of a few nanoseconds, microjoule pulse energies and peak powers of many kilowatts. Intracavity frequency doubling can be used for green output.
  • Single-frequency operation, typically achieved with unidirectional ring lasers (e.g. NPROs = nonplanar ring oscillators) or with microchip lasers, allows for operation with very small linewidth in the lower kilohertz region.
  • Larger lasers in side-pumped or end-pumped configurations (see above), having the geometry of rod lasers, slab lasers or thin-disk lasers, are suitable for output powers up to several kilowatts. Particularly thin-disk lasers can still offer very high beam quality, and also a high power efficiency.
  • Q-switched Nd:YAG lasers are still widely used in lamp-pumped versions. Pulsed pumping allows for high pulse energies, whereas the average output powers are often moderate (e.g. a few watts). The cost of such lamp-pumped lasers is lower than for diode-pumped versions with similar output powers.
  • Fiber lasers are a special kind of solid-state lasers, with a high potential for high average output power, high power efficiency, high beam quality, and broad wavelength tunability. See also the articles on fiber lasers versus bulk lasers and on high-power fiber lasers and amplifiers.
典型的固体激光
不同类型固态激光器的例子如下:

小型二极管泵浦Nd:YAG(→YAG激光器)或Nd:YVO4激光器(→钒酸盐激光器)的输出功率通常在几毫瓦(用于小型装置)和几瓦之间。q开关版本产生的脉冲持续时间为几纳秒,脉冲能量为微焦耳,峰值功率为许多千瓦。内腔倍频可用于绿色输出。
单频操作,通常通过单向环形激光器(例如NPROs =非平面环形振荡器)或微芯片激光器实现,允许在低千赫兹区域以非常小的线宽进行操作。
在侧抽运或端抽运配置的更大的激光器(见上面),具有棒状激光器、平板激光器或薄盘激光器的几何形状,适合输出功率高达几千瓦。特别是薄盘激光器仍然可以提供非常高的光束质量,也具有很高的功率效率。
q开关Nd:YAG激光器仍然广泛应用于灯泵浦版本。脉冲抽运允许高脉冲能量,而平均输出功率通常是中等(例如几瓦)。这种灯泵浦激光器的成本比类似输出功率的二极管泵浦激光器要低。
光纤激光器是一种特殊的固体激光器,具有高平均输出功率、高功率效率、高光束质量和宽波长可调谐等优点。另请参阅有关光纤激光器与散装激光器以及高功率光纤激光器和放大器的文章。Solid-state media

Generally, the active medium of a solid-state laser consists of a glass or crystalline "host" material to which is added a "dopant" such as neodymium, chromium, erbium, or ytterbium. Many of the common dopants are rare earth elements, because the excited states of such ions are not strongly coupled with the thermal vibrations of their crystal lattices (phonons), and their operational thresholds can be reached at relatively low intensities of laser pumping.

There are many hundreds of solid-state media in which laser action has been achieved, but relatively few types are in widespread use. Of these, probably the most common is neodymium-doped yttrium aluminum garnet(Nd:YAG). Neodymium-doped glass (Nd:glass) and ytterbium-doped glasses or ceramics are used at very high power levels (terawatts) and high energies (megajoules), for multiple-beam inertial confinement fusion.

The first material used for lasers was synthetic ruby crystals. Ruby lasers are still used for a few applications, but they are not common because of their low power efficiencies. At room temperature, ruby lasers emit only short pulses of light, but at cryogenic temperatures they can be made to emit a continuous train of pulses.

Some solid-state lasers can also be tunable using several intracavity techniques which employ etalons, prisms, and gratings, or a combination of these.  Titanium-doped sapphire is widely used for its broad tuning range, 660 to 1080 nanometers. Alexandrite lasers are tunable from 700 to 820 nm, and they yield higher-energy pulses than titanium-sapphire lasers because of the gain medium's longer energy storage time and higher damage threshold.


通常,固态激光器的有源介质由玻璃或晶体“主体”材料组成,其中添加了“掺杂剂”,如钕、铬、铒或镱。许多常见的掺杂物是稀土元素,因为这些离子的激发态与其晶体晶格(声子)的热振动没有强耦合,它们的工作阈值可以在相对较低的激光抽运强度下达到。
在数以百计的固态介质中,激光作用已经被实现,但相对较少的类型被广泛使用。其中,可能最常见的是掺钕钇铝石榴石(Nd:YAG)。钕掺杂玻璃(Nd:glass)和镱掺杂玻璃或陶瓷被用于非常高的功率级(太瓦)和高能(兆焦耳),用于多束惯性约束聚变。
最早用于激光的材料是人造红宝石晶体。Ruby激光器仍然在一些应用中使用,但由于其低功率效率,它们并不常见。在室温下,红宝石激光器只能发出短脉冲光,但在低温下,它们可以发出连续的脉冲序列。
一些固态激光器也可以使用几种使用标准具、棱镜和光栅或这些的组合的腔内技术进行调谐。掺钛蓝宝石因其调谐范围宽(660 ~ 1080纳米)而被广泛应用。紫宝石激光器可从700 nm调谐到820 nm,它们比钛蓝宝石激光器产生更高能量的脉冲,因为增益介质的能量存储时间更长,损伤阈值更高。

Pumping

Solid state lasing media are typically optically pumped, using either a flashlamp or arc lamp, or by laser diodes. Diode-pumped solid-state laserstend to be much more efficient, and have become much more common as the cost of high power semiconductor lasers has decreased.

固体激光介质通常是光泵浦的,使用闪光灯或弧光灯或激光二极管。二极管泵浦固态激光器的效率更高,而且随着高功率半导体激光器成本的降低,它已经变得更加普遍。

Mode locking

Mode locking of solid state lasers has wide applications as large energy ultra-short pulses can be obtained. Like its counterpart, the fiber laser, there are three types of real saturable absorbers widely used as mode lockers: SESAM, SWCNT and graphene.

Particularly, graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It is recently confirmed that the optical absorption from graphene could become saturated when the input optical intensity is above a threshold value. This nonlinear optical behavior is termed saturable absorption and the threshold value is called the saturation fluence. Graphene can be saturated readily under strong excitation over the visible to near-infrared region, due to the universal optical absorption and zero band gap. This has relevance for the mode locking of fiber lasers, where wideband tuneability may be obtained using graphene as the saturable absorber. Due to this special property, graphene has wide application in ultrafast photonics. Further, comparing with the SWCNTs, as graphene has a 2D structure it should have much smaller non-saturable loss and much higher damage threshold. Indeed, with an erbium-doped fiber laser, self-started mode locking and stable soliton pulse emission with high energy have been achieved.

固体激光器的锁模具有广泛的应用前景,可以获得大能量的超短脉冲。与光纤激光器一样,目前有三种可饱和吸收器被广泛用作模式锁定器:SESAM、SWCNT和石墨烯。
特别地,石墨烯是一种单原子厚度的由sp2键合碳原子组成的平面薄片,密集地排列在蜂窝状晶格中。最近证实,当输入光强超过一个阈值时,石墨烯的光吸收会达到饱和。这种非线性光学行为称为可饱和吸收,其阈值称为饱和通量。由于石墨烯具有普遍的光学吸收和零带隙,在可见光到近红外区域的强激发下,石墨烯很容易达到饱和。这与光纤激光器的模式锁定有关,在光纤激光器中,使用石墨烯作为饱和吸收体可获得宽带可调谐性。由于这种特殊的性质,石墨烯在超快光子器件中有着广泛的应用。此外,与SWCNTs相比,由于石墨烯具有二维结构,其不饱和损失要小得多,损伤阈值要高得多。实际上,掺铒光纤激光器已经实现了自启动锁模和高能稳定孤子脉冲发射。

History and applications

Robert N. Hall developed the semiconductor laser in 1962, while working at General Electric in Schenectady, New York.

Solid-state lasers are being developed as optional weapons for the F-35 Lightning II, and are reaching near-operational status, as well as the introduction of Northrop Grumman's FIRESTRIKE laser weapon system. In April 2011 the United States Navy tested a high energy solid state laser. The exact range is classified, but they said it fired "miles not yards".

Uranium-doped calcium fluoride was the second type of solid state laserinvented, in the 1960s. Peter Sorokin and Mirek Stevenson at IBM's laboratories in Yorktown Heights (US) achieved lasing at 2.5 µm shortly after Maiman's ruby laser.

1962年,在纽约斯克内克塔迪的通用电气公司工作时,罗伯特·霍尔发明了半导体激光器。
固态激光器正在被开发为F-35闪电II的可选武器,并正在接近作战状态,以及诺斯罗普·格鲁曼公司的火击激光武器系统的引入。2011年4月,美国海军测试了一种高能固体激光器。确切的射程是保密的,但是他们说它发射了“几英里而不是几码”。
掺铀氟化钙是在20世纪60年代发明的第二种固态激光器。在梅曼的红宝石激光器之后不久,IBM公司位于美国约克敦高地实验室的彼得·索罗金和米瑞克·史蒂文森实现了2.5µm的激光。








Ion Laser

An ion laser is a gas laser that uses an ionized gas as its lasing medium. Like other gas lasers, ion lasers feature a sealed cavity containing the laser medium and mirrors forming a Fabry–Pérot resonator. Unlike helium–neon lasers, the energy level transitions that contribute to laser action come from ions. Because of the large amount of energy required to excite the ionic transitions used in ion lasers, the required current is much greater, and as a result all but the smallest ion lasers are water-cooled. A small air-cooled ion laser might produce, for example, 130 mW of light with a tube current of 10 A at 105 V. This is a total power draw over 1 kW, which translates into a large of heat that must be dissipated.

离子激光器是一种利用电离气体作为激光介质的气体激光器。和其他气体激光器一样,离子激光器有一个密封的腔体,里面包含激光介质和形成Fabry-Pérot谐振器的镜子。与氦氖激光器不同的是,促成激光作用的能级跃迁来自离子。由于激发离子激光器中使用的离子跃迁需要大量的能量,因此所需的电流要大得多,因此除了最小的离子激光器外,所有的离子激光器都是水冷的。例如,一个小型空冷离子激光器可以产生130兆瓦的光,管电流为10 A,电压为105 V。这是一个超过1千瓦的总功率消耗,转换成大量的热量,必须消散。Type

Krypton laser

A krypton laser is an ion laser using krypton ions as a gain medium, pumpedby electric discharge. Krypton lasers are used for scientific research, or when krypton is mixed with argon, for creation of "white-light" lasers, useful for laser light shows. Krypton lasers are also used in medicine (e.g. for coagulation of retina), for manufacture of security holograms, and numerous other purposes.

Krypton lasers emit at several wavelengths through the visible spectrum: at 406.7 nm, 413.1 nm, 415.4 nm, 468.0 nm, 476.2 nm, 482.5 nm, 520.8 nm, 530.9 nm, 568.2 nm, 647.1 nm, 676.4 nm.


氪激光器
氪离子激光器是一种利用氪离子作为增益介质,通过放电泵浦的离子激光器。氪激光用于科学研究,或者当氪与氩混合时,产生“白光”激光,用于激光表演。氪激光还用于医学(如凝固视网膜)、制造安全全息图和许多其他用途。
氪激光在可见光谱中可以发射出几种波长:406.7 nm、413.1 nm、415.4 nm、468.0 nm、476.2 nm、482.5 nm、520.8 nm、530.9 nm、568.2 nm、647.1 nm、676.4 nm。

Argon laser

The argon-ion laser was invented in 1964 by William Bridges at Hughes Aircraft and is one of a family of ion lasers that use a noble gas as the active medium.

Argon-ion lasers are used for retinalphototherapy(fordiabetes),lithography, andpumpingother lasers. Argon-ion lasers emit at 13 wavelengths through the visible, ultraviolet, and near-visible spectrum, including: 351.1nm, 363.8nm, 454.6nm, 457.9nm, 465.8nm, 476.5nm, 488.0nm, 496.5nm, 501.7nm, 514.5nm, 528.7nm, 1092.3 nm.

氩离子激光器是休斯飞机公司的威廉·布里奇斯于1964年发明的,它是离子激光器家族中的一种,使用稀有气体作为活性介质。
氩离子激光器用于视网膜光疗(治疗糖尿病)、光刻和抽运其他激光。氩离子激光器通过可见、紫外和近可见光谱发射13个波长,包括:351.1 nm、363.8 nm、454.6 nm、457.9 nm、465.8 nm、476.5 nm、488.0 nm、496.5 nm、501.7 nm、514.5 nm、528.7 nm、1092.3 nm。

Common argon and krypton lasers are capable of emitting continuous-wave (CW) output of several milliwatts to tens of watts. Their tubes are usually made from nickel end bells, kovar metal-to-ceramic seals, beryllium oxideceramics, or tungsten disks mounted on a copper heat spreader in a ceramic liner. The earliest tubes were simple quartz, followed by quartz with graphite disks. In comparison with the helium–neon lasers that require just a few milliamperes, the current used for pumping the krypton laser is several amperes, as the gas has to be ionized. The ion laser tube produces a lot of waste heat and requires active cooling.

The typical noble-gas ion-laser plasma consists of a high-current-density glow discharge in a noble gas in the presence of a magnetic field. Typical CW plasma conditions are current densities of 100 to 2000 A/cm, tube diameters of 1 to 10 mm, filling pressures of 0.1 to 1.0 Torr (0.0019 to 0.019 psi), and an axial magnetic field of the order of 1000 G.

William R. Bennett, the co-inventor of the first gas laser (the helium–neon laser), was the first to observe spectral hole burning effects in gas lasers and created a theory of hole burning effects on laser oscillation. He was co-discoverer of lasers using electron-impact excitation in each of the noble gases, dissociative excitation transfer in the neon–oxygen laser (the first chemical laser), and collision excitation in several metal-vapor lasers.

Other commercially available types

  • Ar/Kr: A mix of argon and krypton can result in a laser with output wavelengths that appear as white light.
  • Helium–cadmium: blue laser emission at 442 nm and ultraviolet at 325 nm.
  • Copper vapor: yellow and green emission at 578 nm and 510 nm.

Experimental

  • Xenon
  • Iodine
  • Oxygen

普通的氩和氪激光器能够发射几毫瓦到几十瓦的连续波输出。他们的管通常由镍端钟,可瓦尔金属陶瓷密封,氧化铍陶瓷,或钨盘安装在铜热扩散器在陶瓷衬里。最早的管道是简单的石英,然后是带石墨盘的石英。氦氖激光器只需要几毫安,与之相比,氪激光器需要几安培的电流,因为气体必须电离。离子激光管产生大量的废热,需要主动冷却。
典型的稀有气体离子激光等离子体是由高电流密度辉光放电组成的。典型的连续等离子体条件是电流密度为100到2000 A/cm,管径为1到10 mm,填充压力为0.1到1.0 Torr(0.0019到0.019 psi),轴向磁场为1000 G。
William R. Bennett是第一个气体激光器(氦氖激光器)的共同发明者,他是第一个观察气体激光器中光谱空穴燃烧效应的人,创立了激光振荡中的空穴燃烧效应理论。他是利用稀有气体中的电子碰撞激发、氖氧激光器(第一个化学激光器)中的解离激发转移和几种金属蒸气激光器中的碰撞激发的激光的共同发现者。
其他可在市场上买到的类型
氩/氪:氩和氪的混合可以产生输出波长为白光的激光。
氦镉:442 nm的蓝色激光发射和325 nm的紫外线发射。
铜蒸气:在578 nm和510 nm处发出黄色和绿色。


Power supplies
  • NPN passbank like the Spectra-physics 270 supply
  • MOSFET switchers like the Omnichrome 150 supply
  • Early switchers used NPN_PNP Pairs, (i.e. American Laser or HGM Medical)
  • IGBT will be seen more in days to come
  • Switched resistor (Spectra Physics)
  • Non-switched resistor (Home-made, typically a water heater element)
  • Water-cooled resistor (Laser Ionics etc.)
  • Phased SCR power supplies similar to long xenon arc lamps are used in medical lasers to reduce expense (Coherent)
  • Power on Demand power supplies are used for pulsed medical ion laser systems, these power supplies consist of a large capacitor bank charged by a switching supply to enable multi watt lasers to run off common single phase power supplies in doctor's offices.
  • A typical air-cooled Argon Tube needs an equivalent series resistance of ~6 Ohms when running @ 10 amps off 117V power. The plasma in an ion laser, unlike a Helium Neon Laser, has a slightly positive resistance, but will still run away without ballasting. This is why ion laser supplies are very difficult to design. On a large frame laser, the plasma itself has an effective resistance of about -7 Ohms (Spectra Physics 171 Service Manual)

NPN密码银行,像光谱物理270供应
MOSFET开关,如全色150供应
早期切换者使用NPN_PNP对(即美国激光或HGM医疗)
在未来的日子里,IGBT将会越来越多
开关电阻(光谱物理)
非开关电阻器(国产,通常为热水器元件)
水冷电阻器(激光离子等)
相控式可控硅电源类似于长氙气弧光灯,用于医疗激光器以降低费用(相干)
按需电源用于脉冲医疗离子激光系统,这些电源由一个由开关电源充电的大电容组组成,使多瓦激光器在医生办公室运行普通单相电源。
一个典型的气冷氩气管需要~6欧姆的串联电阻时,运行@ 10安培117V电源。离子激光器中的等离子体,不像氦氖激光器,有一个轻微的正电阻,但仍然会在没有镇流器的情况下逃逸。这就是为什么离子激光电源很难设计的原因。在大框架激光器上,等离子体本身的有效电阻约为-7欧姆(光谱物理171服务手册)


Applications
  • Confocal laser scanning microscopy
  • Surgical.
  • Laser medicine.
  • High speed typesetters.
  • Laser light shows.
  • DNA sequencers.
  • Spectroscopy experiments.
  • Pumping dye lasers.
  • Semiconductor wafer inspection.
  • Direct write high density PCB lithography.
  • Fiber Bragg Grating production.
  • Long coherence length models can be used for holography.

共聚焦激光扫描显微术
外科手术。
激光医学。
高速排字工人。
激光显示。
DNA测序。
光谱学实验。
泵染料激光。
半导体晶片检查。
直接写入高密度PCB光刻。
光纤光栅生产。
长相干长度模型可用于全息照相。


Argon ion Laser – Definition, Construction, Working and 3 Advantage and Disadvantages.

Before discussing Argon ion laser we have to know about ion laser because Argon ion laser is one of the types of ION LASER.

在讨论氩离子激光器之前,我们必须了解离子激光器,因为氩离子激光器是离子激光器的一种类型。


An ion laser is a gas laser in which ionized gas is used as the active or lasing medium. The electrical pumping method is used to achieve the population inversion in an ion laser. The pumping process is a two-step process in ion Laser. In the first step, the electron in the discharge tube makes a collision with neutral atoms of rare gases and thus produces an ion. 

In the second step, these ions are excited to a higher energy level. Therefore, the population of higher energy level increase due to the successive collision of the irons with the electrons in the discharge tube. These lasers require high pumping power of the order of several kilowatts. In ion lasers, both Pulsed and continuous laser action have been observed.

For example, Argon ion laser, Krypton ion laser, and mercury in a laser are common ion gas lasers


离子激光器是一种气体激光器,其中电离气体被用作有源介质或激光介质。采用电泵法在离子激光器中实现种群反转。泵送过程是离子激光器中的两步过程。第一步,放电管中的电子与稀有气体的中性原子碰撞,从而产生离子。

第二步,这些离子被激发到更高的能量水平。因此,由于铁与放电管中的电子连续碰撞,能量水平较高的种群会增加。这些激光器需要几千瓦的高泵浦功率。在离子激光器中,观察到了脉冲和连续激光的作用。

例如,氩离子激光器、氪离子激光器和激光器中的汞是常见的离子气体激光器。


Definition of Argon Ion Laser

An Argon ion laser is a gas laser in which ionized Argon gas is used as the active or lasing medium.

Construction of Argon Ion Laser

The experimental setup of Ar+ ion laser is shown in the figure :

The Argon ion Laser consists of a long and narrow discharge tube made of beryllium oxide filled with organ gas having two Windows at its ends inclined at Brewster’s angle. 

The narrow discharge tube act as an optical resonator or cavity as two Mirrors are placed at each end of the tube facing perpendicular to the length of the tube. One of the mirrors is partially reflecting mirror and the other is 100%  reflecting mirror. 

When a high voltage is applied between the cathode and anode, a high current flows. Due to the high current density, the Argon ions migrate continuously toward the cathode and electrons toward the anode. 

Ions having low mobility tend to accumulate at the cathode, get neutralized, and diffuse slowly back into the discharge tube. 

The discharge tube consists of a return tube to equalize the distribution of argon iron. The electric field in the discharge accelerates the iron which produces a high temperature of approximately 3,000 degrees Kelvin. Therefore the water cooling system is required. 

The hot ions collide with the tube and may damage it. The wall damage may be reduced by using material such as graphite or beryllia (Beo) having higher thermal conductivity. To increase the pump rate and output power, a static magnetic field is applied in the discharge region parallel to the axis. 

This field confines the discharge to the center of the tube and increases the number of electrons near the axis. The Argon ion Laser oscillates simultaneously on two transitions having wavelength 4881Å (blue) and 5145 Å(green). 

Oscillation on a single line can be selected by placing a prism inside the cavity. With this laser, High output powers up to 100W can be obtained from a 1 cm diameter tube. 

Argon离子激光器由一个由氧化铍制成的长而窄的放电管组成,该放电管充满了有机气体,其两端有两个窗户,倾斜于布鲁斯特的角度。

窄放电管充当光学谐振器或腔体,因为两个镜子放置在管子的两端,垂直于管子的长度。一面镜子是部分反射镜,另一面是100%反射镜。

当阴极和阳极之间施加高压时,大电流会流动。由于电流密度高,氩离子不断向阴极迁移,电子向阳极迁移。

移动性低的离子往往在阴极堆积,中和,然后慢慢扩散回放电管中。

放电管由回流管组成,以平衡氩铁的分布。放电中的电场加速了铁,铁会产生大约3000摄氏度的高温。因此,需要水冷却系统。

热离子与管子碰撞,可能会损坏它。使用具有较高导热性的石墨或铍(Beo)等材料可以减少墙壁损坏。为了提高泵浦速率和输出功率,在与轴线平行的放电区域应用静态磁场。

该场将放电限制在管子的中心,并增加轴附近的电子数量。氩离子激光器在波长4881Å(蓝色)和5145 Å(绿色)的两个跃迁上同时振荡。

可以通过在腔内放置棱镜来选择单条线上的振荡。有了这个激光器,可以从直径1厘米的管子中获得高达100W的高输出功率。

.

Working of Argon Ion Laser

The Argon ion Laser is a four-level laser. The various energy level of argon ion is shown in the figure. When electric discharge passes through the tube, the Argon atoms are pumped to energy level E3 by two-step of collision with electrons. 

In the first step, neutral argon atoms are ionized and raised to energy level E1 (known as the ground state of argon ions). In the second step, the ion in the ground state is excited to energy level E3.

Argon离子激光器的工作

Argon离子激光器是一种四电平激光器。氩离子的各种能级如图所示。当放电通过管子时,氩原子通过与电子的两步碰撞被泵到能量水平E3。

在第一步,中性氩原子被电离并提高到能量水平E1(称为氩离子的基态)。第二步,处于基态的离子被激发到能量水平E3。


The excited organ iron in energy labels E3 falls back to energy level E2 either the spontaneous emission or by stimulated emission process. The ions in energy level E2 decay spontaneously to the ground state of argon-ion emitting a photon of wavelength 720Å ( ultraviolet Photon).

In the Argon ion laser, the number of photons of different wavelengths is emitted. For example,, Argon laser generates up to 18 discrete lines (wavelength) ranging from ultraviolet (720 Å) to visible green (5145Å) the majority of the power developed at 4881Å and 5145Å wavelengths. 

A Prism is placed in front of one of the mirrors of the cavity to select a particular wavelength for repeated oscillation in the cavity to stimulated identical photons. As such this laser operates at a single wavelength. In the absence of the prism, the organ and Laser are allowed to board band operation ( i.e. Photon of many wavelengths). 

能量标签E3中的激发器官铁通过自发发射或通过刺激发射过程返回到能量水平E2。能量级E2的离子自发衰变到氩离子的基态,发射波长720Å的光子(紫外线光子)。

在氩离子激光器中,发射不同波长的光子数量。例如,氩激光器产生多达18条离散线(波长),从紫外线(720 Å)到可见绿色(5145Å),其中大部分功率以4881Å和5145Å波长开发。

棱镜放置在腔的一面镜子前,以选择特定波长在腔内重复振荡,以刺激相同的光子。因此,这种激光器以单波长工作。在没有棱镜的情况下,器官和激光器可以进行带状操作(即许多波长的光子)。

Advantages of Argon ion laser 

  • The width of the spectrum of Argon ion laser is large i.e. it emits multiple wavelengths.
  • The output of the Argon laser is high as compared to the output of the He-Ne laser.
  •  The argon laser is a high-gain system.
  •  The divergence of the Argon laser is very small.

Disadvantages of Argon ion Laser

  • The cost of an Argon laser is more than that of a He-Ne laser.
  • The efficiency of the argon laser is very small.
  •  A large amount of power supply is needed to operate an Argon laser.

 Applications of Argon ion laser

  • Argon lasers are used to treat glaucoma and diabetic eye diseases.
  • They are used in Raman spectroscopy.
  • They are used in holography.
  • They are used in forensic science.
  • They are used as sources for optical pumping.

Krypton Ion laser

In the Krypton ion Iron laser, the active or lasing medium is krypton ions. The population inversion is achieved through the electrical pumping method. 

The working of krypton ion Laser is similar to that of Argon ion Laser. However, the output krypton iron laser has spectral lines in the visible region of the spectrum. On the other hand, the output of the argon-ion laser has a spectral line in the visible region, ultraviolet region, and near-visible region of the spectrum. 

在氪离子铁激光器中,活性或激光介质是氪离子。通过电泵法实现种群反转。

氪离子激光器的工作原理与氩离子激光器相似。然而,输出氪铁激光器在光谱的可见区域有光谱线。另一方面,氩离子激光器的输出在光谱的可见区域、紫外线区域和近可见区域都有一条光谱线。


Semi Dance
一个爱跳舞的半导体民工~
 最新文章