[1] American Psychiatric Association (2022). Diagnostic and Statistical Manual of Mental Disorders, 5th ed., text rev.
[2] Morris, S.E., Sanislow, C.A., Pacheco, J., Vaidyanathan, U., Gordon, J.A., and Cuthbert, B.N. (2022). Revisiting the seven pillars of RDoC. BMC Med. 20, 220. https://doi.org/10.1186/s12916-022-02414-0.
[3] Kim, E., Huh, J.R., and Choi, G.B. (2024). Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat. Immunol. 25, 598–606. https://doi.org/10.1038/s41590-024-01797-x.
[4] Naspolini, N.F., Schüroff, P.A., Figueiredo, M.J., Sbardellotto, G.E., Ferreira, F.R., Fatori, D., Polanczyk, G.V., Campos, A.C., and Taddei, C.R. (2024). The Gut Microbiome in the First One Thousand Days of Neurodevelopment: A Systematic Review from the Microbiome Perspective. Microorganisms 12, 424. https://doi.org/10.3390/microorganisms12030424.
[5] Reús, G.Z., Manosso, L.M., Quevedo, J., and Carvalho, A.F. (2023). Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci. Biobehav. Rev. 155, 105425. https://doi.org/10.1016/j.neubiorev.2023.105425.
[6] Riehl, L., Fürst, J., Kress, M., and Rykalo, N. (2023). The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front. Neurosci. 17, 1302957. https://doi.org/10.3389/fnins.2023.1302957.
[7] Kalisch, R., Russo, S.J., and Müller, M.B. (2024). Neurobiology and systems biology of stress resilience. Physiol. Rev. 104, 1205–1263. https://doi.org/10.1152/physrev.00042.2023.
[8] Hyman, S.E. (2012). Revolution Stalled. Sci. Transl. Med. 4, 4. 155cm111. https://doi.org/10.1126/scitranslmed.3003142.
[9] Ban, T.A. (2006). The role of serendipity in drug discovery. Dialogues Clin. Neurosci. 8, 335–344. https://doi.org/10.31887/DCNS.2006.8.3/tban.
[10] Cade, J.F. (1970). The story of lithium. Discov. Biol. Psychiatry, 218–229.
[11] Ban, T.A. (2007). Fifty years chlorpromazine: a historical perspective. Neuropsychiatr. Dis. Treat. 3, 495–500.
[12] Khun, R. (1996). The discovery of the tricyclic antidepressants and the history of their use in early years. In A History of the CINP, T.A. Ban and O.S. Roy, eds. (J.M. Productions), pp. 425–435.
[13] Arnt, J. (1982). Pharmacological Specificity of Conditioned Avoidance Response Inhibition in Rats: Inhibition by Neuroleptics and Correlation to Dopamine Receptor Blockade. Acta Pharmacol. Toxicol. (Copenh) 51, 321–329. https://doi.org/10.1111/j.1600-0773.1982.tb01032.x.
[14] Seeman, P., Lee, T., Chau-Wong, M., and Wong, K. (1976). Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719. https://doi.org/10.1038/261717a0.
[15] Axelrod, J., Whitby, L.G., and Hertting, G. (1961). Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133, 383–384. https://doi.org/10.1126/science.133.3450.383.
[16] Sironi, V.A. (2011). Origin and Evolution of Deep Brain Stimulation. Front. Integr. Neurosci. 5, 42. https://doi.org/10.3389/fnint.2011.00042.
[17] Sperry, R.W. (1952). NEUROLOGY AND THE MIND-BRAIN PROBLEM. Am. Sci. 40, 291–312.
[18] Mogilner, A., and Rezai, A.R. (2003). Brain Stimulation: History, Current Clinical Application, and Future Prospects (Springer).
[19] Figee, M., Riva-Posse, P., Choi, K.S., Bederson, L., Mayberg, H.S., and Kopell, B.H. (2022). Deep Brain Stimulation for Depression. Neurotherapeutics 19, 1229–1245. https://doi.org/10.1007/s13311-022-01270-3.
[20] Sheth, S.A., and Mayberg, H.S. (2023). Deep Brain Stimulation for Obsessive-Compulsive Disorder and Depression. Annu. Rev. Neurosci. 46, 341–358. https://doi.org/10.1146/annurev-neuro-110122-110434.
[21] Scangos, K.W., Khambhati, A.N., Daly, P.M., Makhoul, G.S., Sugrue, L.P., Zamanian, H., Liu, T.X., Rao, V.R., Sellers, K.K., Dawes, H.E., et al. (2021). Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700. https://doi.org/10.1038/s41591-021-01480-w.
[22] Franzoi, D., Bockting, C.L., Bennett, K.F., Odom, A., Lucassen, P.J., Pathania, A., Lee, A., Brouwer, M.E., van de Schoot, R., Wiers, R.W., and Breedvelt, J.J.F. (2024). Which individual, social, and urban factors in early childhood predict psychopathology in later childhood, adolescence and young adulthood? A systematic review. SSM Popul. Health 25, 101575. https://doi.org/10.1016/j.ssmph.2023.101575.
[23] Grover, S., Varadharajan, N., and Venu, S. (2024). Urbanization and psychosis: an update of recent evidence. Curr. Opin. Psychiatry 37, 191–201. https://doi.org/10.1097/yco.0000000000000931.
[24] Padrón-Monedero, A., Linares, C., Díaz, J., and Noguer-Zambrano, I. (2024). Impact of drought on mental and behavioral disorders, contributions of research in a climate change context. A narrative review. Int. J. Biometeorol. 68, 1035–1042. https://doi.org/10.1007/s00484-024-02657-x.
[25] Rosi, E., Crippa, A., Pozzi, M., De Francesco, S., Fioravanti, M., Mauri, M., Molteni, M., Morello, L., Tosti, L., Metruccio, F., et al. (2023). Exposure to environmental pollutants and attention-deficit/hyperactivity disorder: an overview of systematic reviews and meta-analyses. Environ. Sci. Pollut. Res. Int. 30, 111676–111692. https://doi.org/10.1007/s11356-023-30173-9.
[26] Xenaki, L.A., Dimitrakopoulos, S., Selakovic, M., and Stefanis, N. (2024). Stress, Environment and Early Psychosis. Curr. Neuropharmacol. 22, 437–460. https://doi.org/10.2174/1570159x21666230817153631.
[27] Hughes, K., Bellis, M.A., Hardcastle, K.A., Sethi, D., Butchart, A., Mikton, C., Jones, L., and Dunne, M.P. (2017). The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health 2, e356–e366. https://doi.org/10.1016/s2468-2667(17)30118-4.
[28] Purcell, S.M. (2017). Genetic Methodologies and Applications. In Charney & Nestler’s Neurobiology of Mental Illness, D.S. Charney, E.J. Nestler, P. Sklar, J.D. Buxbaum, D.S. Charney, E.J. Nestler, P. Sklar, and J.D. Buxbaum, eds. (Oxford University Press) https://doi.org/10.1093/med/9780190681425.003.0001.
[29] Ancestral Populations Network. https://www.nimh.nih.gov/about/organization/dnbbs/genomics-research-branch/ancestral-populations-network-apn.
[30] Rhee, S.J., Marques, A.H., and Teferra, S. (2023). PSYCHIATRIC GENETICS AROUND THE WORLD - THE NIMH ANCESTRAL POPULATIONS NETWORK (APN). Eur. Neuropsychopharmacol. 75, S16. https://doi.org/10.1016/j.euroneuro.2023.08.038.
[31] Giannakopoulou, O., Lin, K., Meng, X., Su, M.H., Kuo, P.H., Peterson, R.E., Awasthi, S., Moscati, A., Coleman, J.R.I., Bass, N., et al. (2021). The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. JAMA Psychiatry 78, 1258–1269. https://doi.org/10.1001/jamapsychiatry.2021.2099.
[32] Lam, M., Chen, C.Y., Li, Z., Martin, A.R., Bryois, J., Ma, X., Gaspar, H., Ikeda, M., Benyamin, B., Brown, B.C., et al. (2019). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678. https://doi.org/10.1038/s41588-019-0512-x.
[33] Sekar, A., Bialas, A.R., de Rivera, H., Davis, A., Hammond, T.R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., Van Doren, V., et al. (2016). Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183. https://doi.org/10.1038/nature16549.
[34] Yilmaz, M., Yalcin, E., Presumey, J., Aw, E., Ma, M., Whelan, C.W., Stevens, B., McCarroll, S.A., and Carroll, M.C. (2021). Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat. Neurosci. 24, 214–224. https://doi.org/10.1038/s41593-020-00763-8.
[35] Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J.D., Bass, N., Bigdeli, T.B., Breen, G., Bromet, E.J., et al. (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516. https://doi.org/10.1038/s41586-022-04556-w.
[36] Hooper, A.W.M., Wong, H., Niibori, Y., Abdoli, R., Karumuthil-Melethil, S., Qiao, C., Danos, O., Bruder, J.T., and Hampson, D.R. (2021). Gene therapy using an ortholog of human fragile X mental retardation protein partially rescues behavioral abnormalities and EEG activity. Mol. Ther. Methods Clin. Dev. 22, 196–209. https://doi.org/10.1016/j.omtm.2021.06.013.
[37] Jiang, Y., Han, L., Meng, J., Wang, Z., Zhou, Y., Yuan, H., Xu, H., Zhang, X., Zhao, Y., Lu, J., et al. (2022). Gene therapy using human FMRP isoforms driven by the human FMR1 promoter rescues fragile X syndrome mouse deficits. Mol. Ther. Methods Clin. Dev. 27, 246–258. https://doi.org/10.1016/j.omtm.2022.10.002.
[38] Clarke, M.T., Remesal, L., Lentz, L., Tan, D.J., Young, D., Thapa, S., Namuduri, S.R., Borges, B., Kirn, G., Valencia, J., et al. (2024). Prenatal delivery of a therapeutic antisense oligonucleotide achieves broad biodistribution in the brain and ameliorates Angelman syndrome phenotype in mice. Mol. Ther. 32, 935–951. https://doi.org/10.1016/j.ymthe.2024.02.004.
[39] Roy, B., Amemasor, E., Hussain, S., and Castro, K. (2023). UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 12, 7. https://doi.org/10.3390/diseases12010007.
[40] Ramaswami, G., Won, H., Gandal, M.J., Haney, J., Wang, J.C., Wong, C.C.Y., Sun, W., Prabhakar, S., Mill, J., and Geschwind, D.H. (2020). Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nat. Commun. 11, 4873. https://doi.org/10.1038/s41467-020-18526-1.
[41] Ruzzo, E.K., Pérez-Cano, L., Jung, J.Y., Wang, L.K., Kashef-Haghighi, D., Hartl, C., Singh, C., Xu, J., Hoekstra, J.N., Leventhal, O., et al. (2019). Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 178, 850–866.e26. https://doi.org/10.1016/j.cell.2019.07.015.
[42] Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T.B., Bryois, J., Chen, C.-Y., Dennison, C.A., Hall, L.S., et al. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508. https://doi.org/10.1038/s41586-022-04434-5.
[43] Ament, S.A., Cortes-Gutierrez, M., Herb, B.R., Mocci, E., Colantuoni, C., and McCarthy, M.M. (2023). A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci. Transl. Med. 15, eade1283. https://doi.org/10.1126/scitranslmed.ade1283.
[44] Braun, E., Danan-Gotthold, M., Borm, L.E., Lee, K.W., Vinsland, E., Lönnerberg, P., Hu, L., Li, X., He, X., Andrusivova, Z., et al. (2023). Comprehensive cell atlas of the first-trimester developing human brain. Science 382, eadf1226. https://doi.org/10.1126/science.adf1226.
[45] Chartrand, T., Dalley, R., Close, J., Goriounova, N.A., Lee, B.R., Mann, R., Miller, J.A., Molnar, G., Mukora, A., Alfiler, L., et al. (2023). Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 382, eadf0805. https://doi.org/10.1126/science.adf0805.
[46] Chiou, K.L., Huang, X., Bohlen, M.O., Tremblay, S., DeCasien, A.R., O’Day, D.R., Spurrell, C.H., Gogate, A.A., and Zintel, T.M.; Cayo; Biobank Research Unit (2023). A single-cell multi-omic atlas spanning the adult rhesus macaque brain. Sci. Adv. 9, eadh1914. https://doi.org/10.1126/sciadv.adh1914.
[47] Costantini, I., Morgan, L., Yang, J., Balbastre, Y., Varadarajan, D., Pesce, L., Scardigli, M., Mazzamuto, G., Gavryusev, V., Castelli, F.M., et al. (2023). A cellular resolution atlas of Broca’s area. Sci. Adv. 9, eadg3844. https://doi.org/10.1126/sciadv.adg3844.
[48] Han, X., Guo, S., Ji, N., Li, T., Liu, J., Ye, X., Wang, Y., Yun, Z., Xiong, F., Rong, J., et al. (2023). Whole human-brain mapping of single cortical neurons for profiling morphological diversity and stereotypy. Sci. Adv. 9, eadf3771. https://doi.org/10.1126/sciadv.adf3771.
[49] Herb, B.R., Glover, H.J., Bhaduri, A., Colantuoni, C., Bale, T.L., Siletti, K., Hodge, R., Lein, E., Kriegstein, A.R., Doege, C.A., and Ament, S.A. (2023). Single-cell genomics reveals region-specific developmental trajectories underlying neuronal diversity in the human hypothalamus. Sci. Adv. 9, eadf6251. https://doi.org/10.1126/sciadv.adf6251.
[50] Johansen, N., Somasundaram, S., Travaglini, K.J., Yanny, A.M., Shumyatcher, M., Casper, T., Cobbs, C., Dee, N., Ellenbogen, R., Ferreira, M., et al. (2023). Interindividual variation in human cortical cell type abundance and expression. Science 382, eadf2359. https://doi.org/10.1126/science.adf2359.
[51] Jorstad, N.L., Close, J., Johansen, N., Yanny, A.M., Barkan, E.R., Travaglini, K.J., Bertagnolli, D., Campos, J., Casper, T., Crichton, K., et al. (2023). Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812. https://doi.org/10.1126/science.adf6812.
[52] Jorstad, N.L., Song, J.H.T., Exposito-Alonso, D., Suresh, H., Castro-Pacheco, N., Krienen, F.M., Yanny, A.M., Close, J., Gelfand, E., Long, B., et al. (2023). Comparative transcriptomics reveals human-specific cortical features. Science 382, eade9516. https://doi.org/10.1126/science.ade9516.
[53] Kim, C.N., Shin, D., Wang, A., and Nowakowski, T.J. (2023). Spatiotemporal molecular dynamics of the developing human thalamus. Science 382, eadf9941. https://doi.org/10.1126/science.adf9941.
[54] Krienen, F.M., Levandowski, K.M., Zaniewski, H., Del Rosario, R.C.H., Schroeder, M.E., Goldman, M., Wienisch, M., Lutservitz, A., Beja-Glasser, V.F., Chen, C., et al. (2023). A marmoset brain cell census reveals regional specialization of cellular identities. Sci. Adv. 9, eadk3986. https://doi.org/10.1126/sciadv.adk3986.
[55] Lee, B.R., Dalley, R., Miller, J.A., Chartrand, T., Close, J., Mann, R., Mukora, A., Ng, L., Alfiler, L., Baker, K., et al. (2023). Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484. https://doi.org/10.1126/science.adf6484.
[56] Li, Y.E., Preissl, S., Miller, M., Johnson, N.D., Wang, Z., Jiao, H., Zhu, C., Wang, Z., Xie, Y., Poirion, O., et al. (2023). A comparative atlas of single-cell chromatin accessibility in the human brain. Science 382, eadf7044. https://doi.org/10.1126/science.adf7044.
[57] Micali, N., Ma, S., Li, M., Kim, S.K., Mato-Blanco, X., Sindhu, S.K., Arellano, J.I., Gao, T., Shibata, M., Gobeske, K.T., et al. (2023). Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 382, eadf3786. https://doi.org/10.1126/science.adf3786.
[58] Rózsa, M., Tóth, M., Oláh, G., Baka, J., Lákovics, R., Barzó, P., and Tamás, G. (2023). Temporal disparity of action potentials triggered in axon initial segments and distal axons in the neocortex. Sci. Adv. 9, eade4511. https://doi.org/10.1126/sciadv.ade4511.
[59] Siletti, K., Hodge, R., Mossi Albiach, A., Lee, K.W., Ding, S.L., Hu, L., Lönnerberg, P., Bakken, T., Casper, T., Clark, M., et al. (2023). Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046. https://doi.org/10.1126/science.add7046.
[60] Tian, W., Zhou, J., Bartlett, A., Zeng, Q., Liu, H., Castanon, R.G., Kenworthy, M., Altshul, J., Valadon, C., Aldridge, A., et al. (2023). Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357. https://doi.org/10.1126/science.adf5357.
[61] Velmeshev, D., Perez, Y., Yan, Z., Valencia, J.E., Castaneda-Castellanos, D.R., Wang, L., Schirmer, L., Mayer, S., Wick, B., Wang, S., et al. (2023). Single-cell analysis of prenatal and postnatal human cortical development. Science 382, eadf0834. https://doi.org/10.1126/science.adf0834.
[62] Wilbers, R., Galakhova, A.A., Driessens, S.L.W., Heistek, T.S., Metodieva, V.D., Hagemann, J., Heyer, D.B., Mertens, E.J., Deng, S., Idema, S., et al. (2023). Structural and functional specializations of human fast-spiking neurons support fast cortical signaling. Sci. Adv. 9, eadf0708. https://doi.org/10.1126/sciadv.adf0708.
[63] Wilbers, R., Metodieva, V.D., Duverdin, S., Heyer, D.B., Galakhova, A.A., Mertens, E.J., Versluis, T.D., Baayen, J.C., Idema, S., Noske, D.P., et al. (2023). Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling. Sci. Adv. 9, eade3300. https://doi.org/10.1126/sciadv.ade3300.
[64] Dzirasa, K., Thomas, G.E., and Hathaway, A.C.S. (2024). Towards equitable brain genomics research by us for us. Nat. Neurosci. 27, 1021–1023. https://doi.org/10.1038/s41593-024-01651-1.
[65] Benjamin, K.J.M., Chen, Q., Eagles, N.J., Huuki-Myers, L.A., Collado-Torres, L., Stolz, J.M., Pertea, G., Shin, J.H., Paquola, A.C.M., Hyde, T.M., et al. (2023). Genetic and environmental contributions to ancestry differences in gene expression in the human brain. Preprint at bioRxiv. https://doi.org/10.1101/2023.03.28.534458.
[66] Segal, A., Parkes, L., Aquino, K., Kia, S.M., Wolfers, T., Frank, B., Hoogman, M., Beckmann, C.F., Westlye, L.T., Andreassen, O.A., et al. (2023). Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. Nat. Neurosci. 26, 1613–1629.
[67] Yang, D., Wang, Y., Qi, T., Zhang, X., Shen, L., Ma, J., Pang, Z., Lal, N.K., McClatchy, D.B., Seradj, S.H., et al. (2024). Phosphorylation of pyruvate dehydrogenase inversely associates with neuronal activity. Neuron 112, 959–971.e8. https://doi.org/10.1016/j.neuron.2023.12.015.
[68] Sakurai, K., Zhao, S., Takatoh, J., Rodriguez, E., Lu, J., Leavitt, A.D., Fu, M., Han, B.X., and Wang, F. (2016). Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit. Neuron 92, 739–753. https://doi.org/10.1016/j.neuron.2016.10.015.
[69] Mich, J.K., Graybuck, L.T., Hess, E.E., Mahoney, J.T., Kojima, Y., Ding, Y., Somasundaram, S., Miller, J.A., Kalmbach, B.E., Radaelli, C., et al. (2021). Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754. https://doi.org/10.1016/j.celrep.2021.108754.
[70] Li, H., Namburi, P., Olson, J.M., Borio, M., Lemieux, M.E., Beyeler, A., Calhoon, G.G., Hitora-Imamura, N., Coley, A.A., Libster, A., et al. (2022). Neurotensin orchestrates valence assignment in the amygdala. Nature 608, 586–592. https://doi.org/10.1038/s41586-022-04964-y.
[71] Ino, D., Tanaka, Y., Hibino, H., and Nishiyama, M. (2022). A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat. Methods 19, 1286–1294. https://doi.org/10.1038/s41592-022-01597-x.
[72] Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., et al. (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat. Biotechnol. 41, 944–957. https://doi.org/10.1038/s41587-022-01561-2.
[73] Guo, Z., Yin, L., Diaz, V., Dai, B., Osakada, T., Lischinsky, J.E., Chien, J., Yamaguchi, T., Urtecho, A., Tong, X., et al. (2023). Neural dynamics in the limbic system during male social behaviors. Neuron 111, 3288–3306.e4. https://doi.org/10.1016/j.neuron.2023.07.011.
[74] Chung, J.E., Sellers, K.K., Leonard, M.K., Gwilliams, L., Xu, D., Dougherty, M.E., Kharazia, V., Metzger, S.L., Welkenhuysen, M., Dutta, B., and Chang, E.F. (2022). High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421.e3. https://doi.org/10.1016/j.neuron.2022.05.007.
[75] Carlson, D., David, L.K., Gallagher, N.M., Vu, M.T., Shirley, M., Hultman, R., Wang, J., Burrus, C., McClung, C.A., Kumar, S., et al. (2017). Dynamically Timed Stimulation of Corticolimbic Circuitry Activates a Stress-Compensatory Pathway. Biol. Psychiatry 82, 904–913. https://doi.org/10.1016/j.biopsych.2017.06.008.
[76] Adesnik, H., and Abdeladim, L. (2021). Probing neural codes with two-photon holographic optogenetics. Nat. Neurosci. 24, 1356–1366. https://doi.org/10.1038/s41593-021-00902-9.
[77] Nagai, Y., Miyakawa, N., Takuwa, H., Hori, Y., Oyama, K., Ji, B., Takahashi, M., Huang, X.P., Slocum, S.T., DiBerto, J.F., et al. (2020). Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167. https://doi.org/10.1038/s41593-020-0661-3.
[78] Challis, R.C., Ravindra Kumar, S., Chan, K.Y., Challis, C., Beadle, K., Jang, M.J., Kim, H.M., Rajendran, P.S., Tompkins, J.D., Shivkumar, K., et al. (2019). Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414. https://doi.org/10.1038/s41596-018-0097-3.
[79] Wang, J.B., Aryal, M., Zhong, Q., Vyas, D.B., and Airan, R.D. (2018). Noninvasive Ultrasonic Drug Uncaging Maps Whole-Brain Functional Networks. Neuron 100, 728–738.e7. https://doi.org/10.1016/j.neuron.2018.10.042.
[80] Shields, B.C., Kahuno, E., Kim, C., Apostolides, P.F., Brown, J., Lindo, S., Mensh, B.D., Dudman, J.T., Lavis, L.D., and Tadross, M.R. (2017). Deconstructing behavioral neuropharmacology with cellular specificity. Science 356, eaaj2161. https://doi.org/10.1126/science.aaj2161.
[81] Sani, O.G., Yang, Y., Lee, M.B., Dawes, H.E., Chang, E.F., and Shanechi, M.M. (2018). Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961. https://doi.org/10.1038/nbt.4200.
[82] Kirkby, L.A., Luongo, F.J., Lee, M.B., Nahum, M., Van Vleet, T.M., Rao, V.R., Dawes, H.E., Chang, E.F., and Sohal, V.S. (2018). An Amygdala-Hippocampus Subnetwork that Encodes Variation in Human Mood. Cell 175, 1688–1700.e14. https://doi.org/10.1016/j.cell.2018.10.005.
[83] Jackson, A.D., Cohen, J.L., Phensy, A.J., Chang, E.F., Dawes, H.E., and Sohal, V.S. (2024). Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state. Neuron 112, 1182–1195.e5. https://doi.org/10.1016/j.neuron.2023.12.017.
[84] Alagapan, S., Choi, K.S., Heisig, S., Riva-Posse, P., Crowell, A., Tiruvadi, V., Obatusin, M., Veerakumar, A., Waters, A.C., Gross, R.E., et al. (2023). Cingulate dynamics track depression recovery with deep brain stimulation. Nature 622, 130–138. https://doi.org/10.1038/s41586-023-06541-3.
[85] Maia, T.V., and Frank, M.J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162. https://doi.org/10.1038/nn.2723.
[86] Montague, P.R., Dolan, R.J., Friston, K.J., and Dayan, P. (2012). Computational psychiatry. Trends Cogn. Sci. 16, 72–80. https://doi.org/10.1016/j.tics.2011.11.018.
[87] Kishida, K.T., King-Casas, B., and Montague, P.R. (2010). Neuroeconomic approaches to mental disorders. Neuron 67, 543–554. https://doi.org/10.1016/j.neuron.2010.07.021.
[88] Bennett, D., Silverstein, S.M., and Niv, Y. (2019). The Two Cultures of Computational Psychiatry. JAMA Psychiatry 76, 563–564. https://doi.org/10.1001/jamapsychiatry.2019.0231.
[89] Huys, Q.J.M., Maia, T.V., and Frank, M.J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413. https://doi.org/10.1038/nn.4238.
[90] Chekroud, A.M., Zotti, R.J., Shehzad, Z., Gueorguieva, R., Johnson, M.K., Trivedi, M.H., Cannon, T.D., Krystal, J.H., and Corlett, P.R. (2016). Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3, 243–250. https://doi.org/10.1016/s2215-0366(15)00471-x.
[91] Berwian, I.M., Wenzel, J.G., Collins, A.G.E., Seifritz, E., Stephan, K.E., Walter, H., and Huys, Q.J.M. (2020). Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation. JAMA Psychiatry 77, 513–522. https://doi.org/10.1001/jamapsychiatry.2019.4971.
[92] Etkin, A., Patenaude, B., Song, Y.J.C., Usherwood, T., Rekshan, W., Schatzberg, A.F., Rush, A.J., and Williams, L.M. (2015). A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40, 1332–1342. https://doi.org/10.1038/npp.2014.333.
[93] Frässle, S., Marquand, A.F., Schmaal, L., Dinga, R., Veltman, D.J., van der Wee, N.J.A., van Tol, M.J., Schöbi, D., Penninx, B.W.J.H., and Stephan, K.E. (2020). Predicting individual clinical trajectories of depression with generative embedding. NeuroImage Clin. 26, 102213. https://doi.org/10.1016/j.nicl.2020.102213.
[94] Schmaal, L., Marquand, A.F., Rhebergen, D., van Tol, M.J., Ruhé, H.G., van der Wee, N.J.A., Veltman, D.J., and Penninx, B.W.J.H. (2015). Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study. Biol. Psychiatry 78, 278–286. https://doi.org/10.1016/j.biopsych.2014.11.018.
[95] Koutsouleris, N., Kahn, R.S., Chekroud, A.M., Leucht, S., Falkai, P., Wobrock, T., Derks, E.M., Fleischhacker, W.W., and Hasan, A. (2016). Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry 3, 935–946. https://doi.org/10.1016/s2215-0366(16)30171-7.
[96] Chekroud, A.M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R., Hasan, A., Kambeitz, J., Corlett, P.R., Koutsouleris, N., Krumholz, H.M., et al. (2024). Illusory generalizability of clinical prediction models. Science 383, 164–167. https://doi.org/10.1126/science.adg8538.
[97] Petzschner, F.H. (2024). Practical challenges for precision medicine. Science 383, 149–150. https://doi.org/10.1126/science.adm9218.
[98] Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B., and Marquand, A.F. (2015). From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57, 328–349. https://doi.org/10.1016/j.neubiorev.2015.08.001.
[99] Varoquaux, G., Raamana, P.R., Engemann, D.A., Hoyos-Idrobo, A., Schwartz, Y., and Thirion, B. (2017). Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuroimage 145, 166–179. https://doi.org/10.1016/j.neuroimage.2016.10.038.
[100] Maia, T.V., Huys, Q.J.M., and Frank, M.J. (2017). Theory-Based Computational Psychiatry. Biol. Psychiatry 82, 382–384. https://doi.org/10.1016/j.biopsych.2017.07.016.
[101] Geisler, W.S., and Kersten, D. (2002). Illusions, perception and Bayes. Nat. Neurosci. 5, 508–510. https://doi.org/10.1038/nn0602-508.
[102] Petzschner, F.H., Glasauer, S., and Stephan, K.E. (2015). A Bayesian perspective on magnitude estimation. Trends Cogn. Sci. 19, 285–293. https://doi.org/10.1016/j.tics.2015.03.002.
[103] Anticevic, A., Gancsos, M., Murray, J.D., Repovs, G., Driesen, N.R., Ennis, D.J., Niciu, M.J., Morgan, P.T., Surti, T.S., Bloch, M.H., et al. (2012). NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc. Natl. Acad. Sci. USA 109, 16720–16725. https://doi.org/10.1073/pnas.1208494109.
[104] Frank, M.J., Seeberger, L.C., and O’Reilly, R.C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943. https://doi.org/10.1126/science.1102941.
[105] Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev. 85, 59–108. https://doi.org/10.1037/0033-295X.85.2.59.
[106] Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychol. Bull. 86, 446–461. https://doi.org/10.1037/0033-2909.86.3.446.
[107] Ratcliff, R. (2014). Measuring psychometric functions with the diffusion model. J. Exp. Psychol. Hum. Percept. Perform. 40, 870–888. https://doi.org/10.1037/a0034954.
[108] Dayan, P., and Niv, Y. (2008). Reinforcement learning: the good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196. https://doi.org/10.1016/j.conb.2008.08.003.
[109] Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction (MIT Press).
[110] Friston, K.J., Stephan, K.E., Montague, R., and Dolan, R.J. (2014). Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry 1, 148–158. https://doi.org/10.1016/s2215-0366(14)70275-5.
[111] Petzschner, F.H., Weber, L.A.E., Gard, T., and Stephan, K.E. (2017). Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis. Biol. Psychiatry 82, 421–430. https://doi.org/10.1016/j.biopsych.2017.05.012.
[112] Redish, A.D., and Gordon, J.A. (2016). Computational Psychiatry: New Perspectives on Mental Illness (The MIT Press) https://doi.org/10.7551/mitpress/9780262035422.001.0001.
[113] Stephan, K.E., Bach, D.R., Fletcher, P.C., Flint, J., Frank, M.J., Friston, K.J., Heinz, A., Huys, Q.J.M., Owen, M.J., Binder, E.B., et al. (2016). Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 3, 77–83. https://doi.org/10.1016/s2215-0366(15)00361-2.
[114] Huys, Q.J.M., Browning, M., Paulus, M.P., and Frank, M.J. (2021). Advances in the computational understanding of mental illness. Neuropsychopharmacology 46, 3–19. https://doi.org/10.1038/s41386-020-0746-4.
[115] Pedersen, M.L., Ironside, M., Amemori, K.I., McGrath, C.L., Kang, M.S., Graybiel, A.M., Pizzagalli, D.A., and Frank, M.J. (2021). Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLoS Comput. Biol. 17, e1008955. https://doi.org/10.1371/journal.pcbi.1008955.
[116] Whitton, A.E., Reinen, J.M., Slifstein, M., Ang, Y.S., McGrath, P.J., Iosifescu, D.V., Abi-Dargham, A., Pizzagalli, D.A., and Schneier, F.R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain 143, 701–710. https://doi.org/10.1093/brain/awaa002.
[117] Geana, A., Barch, D.M., Gold, J.M., Carter, C.S., MacDonald, A.W., 3rd, Ragland, J.D., Silverstein, S.M., and Frank, M.J. (2022). Using Computational Modeling to Capture Schizophrenia-Specific Reinforcement Learning Differences and Their Implications on Patient Classification. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 1035–1046. https://doi.org/10.1016/j.bpsc.2021.03.017.
[118] Wiecki, T.V., Poland, J., and Frank, M.J. (2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clin. Psychol. Sci. 3, 378–399. https://doi.org/10.1177/2167702614565359.
[119] Kang, Y.H.R., Petzschner, F.H., Wolpert, D.M., and Shadlen, M.N. (2017). Piercing of Consciousness as a Threshold-Crossing Operation. Curr. Biol. 27, 2285–2295.e6. https://doi.org/10.1016/j.cub.2017.06.047.
[120] Mulder, M.J., van Maanen, L., and Forstmann, B.U. (2014). Perceptual decision neurosciences - a model-based review. Neuroscience 277, 872–884. https://doi.org/10.1016/j.neuroscience.2014.07.031.
[121] Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574. https://doi.org/10.1146/annurev.neuro.29.051605.113038.
[122] Bahl, A., and Engert, F. (2020). Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat. Neurosci. 23, 94–102. https://doi.org/10.1038/s41593-019-0534-9.
[123] Mathys, C.D., Lomakina, E.I., Daunizeau, J., Iglesias, S., Brodersen, K.H., Friston, K.J., and Stephan, K.E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8, 825. https://doi.org/10.3389/fnhum.2014.00825.
[124] Collins, A.G.E., and Frank, M.J. (2014). Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337–366. https://doi.org/10.1037/a0037015.
[125] Adams, R.A., Pinotsis, D., Tsirlis, K., Unruh, L., Mahajan, A., Horas, A.M., Convertino, L., Summerfelt, A., Sampath, H., Du, X.M., et al. (2022). Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia. Biol. Psychiatry 91, 202–215. https://doi.org/10.1016/j.biopsych.2021.07.024.
[126] Fradkin, I., Adams, R.A., Parr, T., Roiser, J.P., and Huppert, J.D. (2020). Searching for an anchor in an unpredictable world: A computational model of obsessive compulsive disorder. Psychol. Rev. 127, 672–699. https://doi.org/10.1037/rev0000188.
[127] Fradkin, I., Ludwig, C., Eldar, E., and Huppert, J.D. (2020). Doubting what you already know: Uncertainty regarding state transitions is associated with obsessive compulsive symptoms. PLoS Comput. Biol. 16, e1007634. https://doi.org/10.1371/journal.pcbi.1007634.
[128] Rigoux, L., Stephan, K.E., and Petzschner, F.H. (2024). Beliefs, compulsive behavior and reduced confidence in control. PLoS Comput. Biol. 20, e1012207. https://doi.org/10.1371/journal.pcbi.1012207.
[129] Adams, R.A., Stephan, K.E., Brown, H.R., Frith, C.D., and Friston, K.J. (2013). The computational anatomy of psychosis. Front. Psychiatry 4, 47. https://doi.org/10.3389/fpsyt.2013.00047.
[130] Fletcher, P.C., and Frith, C.D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58. https://doi.org/10.1038/nrn2536.
[131] Gold, J.M., Waltz, J.A., Matveeva, T.M., Kasanova, Z., Strauss, G.P., Herbener, E.S., Collins, A.G.E., and Frank, M.J. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129–138. https://doi.org/10.1001/archgenpsychiatry.2011.1269.
[132] Krystal, J.H., Murray, J.D., Chekroud, A.M., Corlett, P.R., Yang, G., Wang, X.J., and Anticevic, A. (2017). Computational Psychiatry and the Challenge of Schizophrenia. Schizophr. Bull. 43, 473–475. https://doi.org/10.1093/schbul/sbx025.
[133] Murray, G.K., Cheng, F., Clark, L., Barnett, J.H., Blackwell, A.D., Fletcher, P.C., Robbins, T.W., Bullmore, E.T., and Jones, P.B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophr. Bull. 34, 848–855. https://doi.org/10.1093/schbul/sbn078.
[134] Stephan, K.E., Baldeweg, T., and Friston, K.J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 59, 929–939. https://doi.org/10.1016/j.biopsych.2005.10.005.
[135] Stephan, K.E., Friston, K.J., and Frith, C.D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527. https://doi.org/10.1093/schbul/sbn176.
[136] Maia, T.V., and Cano-Colino, M. (2015). The role of serotonin in orbitofrontal function and obsessive-compulsive disorder. Clin. Psychol. Sci. 3, 460–482. https://doi.org/10.1177/2167702614566809.
[137] Gillan, C.M., Papmeyer, M., Morein-Zamir, S., Sahakian, B.J., Fineberg, N.A., Robbins, T.W., and de Wit, S. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am. J. Psychiatry 168, 718–726. https://doi.org/10.1176/appi.ajp.2011.10071062.
[138] Gillan, C.M., Robbins, T.W., Sahakian, B.J., van den Heuvel, O.A., and van Wingen, G. (2016). The role of habit in compulsivity. Eur. Neuropsychopharmacol. 26, 828–840. https://doi.org/10.1016/j.euroneuro.2015.12.033.
[139] Pike, A.C., and Robinson, O.J. (2022). Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry 79, 313–322. https://doi.org/10.1001/jamapsychiatry.2022.0051.
[140] Vandendriessche, H., Demmou, A., Bavard, S., Yadak, J., Lemogne, C., Mauras, T., and Palminteri, S. (2023). Contextual influence of reinforcement learning performance of depression: evidence for a negativity bias? Psychol. Med. 53, 4696–4706. https://doi.org/10.1017/s0033291722001593.
[141] Ahmed, S.H., and Koob, G.F. (2005). Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacol. (Berl.) 180, 473–490. https://doi.org/10.1007/s00213-005-2180-z.
[142] Dezfouli, A., Piray, P., Keramati, M.M., Ekhtiari, H., Lucas, C., and Mokri, A. (2009). A neurocomputational model for cocaine addiction. Neural Comput. 21, 2869–2893. https://doi.org/10.1162/neco.2009.10-08-882.
[143] Everitt, B.J., and Robbins, T.W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489. https://doi.org/10.1038/nn1579.
[144] Redish, A.D. (2004). Addiction as a computational process gone awry. Science 306, 1944–1947. https://doi.org/10.1126/science.1102384.
[145] Redish, A.D., Jensen, S., and Johnson, A. (2008). A unified framework for addiction: vulnerabilities in the decision process. Behav. Brain Sci. 31, 415–437. https://doi.org/10.1017/s0140525x0800472x.
[146] Brodersen, K.H., Deserno, L., Schlagenhauf, F., Lin, Z., Penny, W.D., Buhmann, J.M., and Stephan, K.E. (2014). Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 4, 98–111. https://doi.org/10.1016/j.nicl.2013.11.002.
[147] Galioulline, H., Frässle, S., Harrison, S.J., Pereira, I., Heinzle, J., and Stephan, K.E. (2023). Predicting future depressive episodes from resting-state fMRI with generative embedding. Neuroimage 273, 119986. https://doi.org/10.1016/j.neuroimage.2023.119986.
[148] Wiecki, T.V., Antoniades, C.A., Stevenson, A., Kennard, C., Borowsky, B., Owen, G., Leavitt, B., Roos, R., Durr, A., Tabrizi, S.J., and Frank, M.J. (2016). A Computational Cognitive Biomarker for Early-Stage Huntington’s Disease. PLoS One 11, e0148409. https://doi.org/10.1371/journal.pone.0148409.
[149] Gillan, C.M., and Rutledge, R.B. (2021). Smartphones and the Neuroscience of Mental Health. Annu. Rev. Neurosci. 44, 129–151. https://doi.org/10.1146/annurev-neuro-101220-014053.
[150] Gunsilius, C.Z., Heffner, J., Bruinsma, S., Corinha, M., Cortinez, M., Dalton, H., Duong, E., Lu, J., Omar, A., Owen, L.L.W., et al. (2024). SOMAScience: A Novel Platform for Multidimensional, Longitudinal Pain Assessment. JMIR MHealth UHealth 12, e47177. https://doi.org/10.2196/47177.
[151] Eldar, E., Roth, C., Dayan, P., and Dolan, R.J. (2018). Decodability of Reward Learning Signals Predicts Mood Fluctuations. Curr. Biol. 28, 1433–1439.e7. https://doi.org/10.1016/j.cub.2018.03.038.
[152] Fu, Z., Liu, J., Salman, M.S., Sui, J., and Calhoun, V.D. (2023). Functional connectivity uniqueness and variability? Linkages with cognitive and psychiatric problems in children. Nat. Mental Health 1, 956–970. https://doi.org/10.1038/s44220-023-00151-8.
[153] Volkow, N.D., Koob, G.F., Croyle, R.T., Bianchi, D.W., Gordon, J.A., Koroshetz, W.J., Pérez-Stable, E.J., Riley, W.T., Bloch, M.H., Conway, K., et al. (2018). The conception of the ABCD study: From substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7. https://doi.org/10.1016/j.dcn.2017.10.002.
[154] Bianchi, D.W., Brennan, P.F., Chiang, M.F., Criswell, L.A., D’Souza, R.N., Gibbons, G.H., Gilman, J.K., Gordon, J.A., Green, E.D., Gregurick, S., et al. (2024). The All of Us Research Program is an opportunity to enhance the diversity of US biomedical research. Nat. Med. 30, 330–333. https://doi.org/10.1038/s41591-023-02744-3.
[155] Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018. https://doi.org/10.1038/sdata.2016.18.
[156] Wilson, R.C., and Collins, A.G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547. https://doi.org/10.7554/eLife.49547.
[157] Daunizeau, J., Adam, V., and Rigoux, L. (2014). VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Comput. Biol. 10, e1003441. https://doi.org/10.1371/journal.pcbi.1003441.
[158] Fengler, A., Govindarajan, L.N., Chen, T., and Frank, M.J. (2021). Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience. eLife 10, e65074. https://doi.org/10.7554/eLife.65074.
[159] Frässle, S., Aponte, E.A., Bollmann, S., Brodersen, K.H., Do, C.T., Harrison, O.K., Harrison, S.J., Heinzle, J., Iglesias, S., Kasper, L., et al. (2021). TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Front. Psychiatry 12, 680811. https://doi.org/10.3389/fpsyt.2021.680811.
[160] Rutherford, S., Kia, S.M., Wolfers, T., Fraza, C., Zabihi, M., Dinga, R., Berthet, P., Worker, A., Verdi, S., Ruhe, H.G., et al. (2022). The normative modeling framework for computational psychiatry. Nat. Protoc. 17, 1711–1734. https://doi.org/10.1038/s41596-022-00696-5.
[161] Wiecki, T.V., Sofer, I., and Frank, M.J. (2013). HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python. Front. Neuroinform. 7, 14. https://doi.org/10.3389/fninf.2013.00014.
[162] Khalsa, S.S., Adolphs, R., Cameron, O.G., Critchley, H.D., Davenport, P.W., Feinstein, J.S., Feusner, J.D., Garfinkel, S.N., Lane, R.D., Mehling, W.E., et al. (2018). Interoception and Mental Health: A Roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513. https://doi.org/10.1016/j.bpsc.2017.12.004.
[163] Petzschner, F.H., Garfinkel, S.N., Paulus, M.P., Koch, C., and Khalsa, S.S. (2021). Computational Models of Interoception and Body Regulation. Trends Neurosci. 44, 63–76. https://doi.org/10.1016/j.tins.2020.09.012.
[164] Edwards, M.J., Adams, R.A., Brown, H., Pareés, I., and Friston, K.J. (2012). A Bayesian account of ’hysteria’. Brain 135, 3495–3512. https://doi.org/10.1093/brain/aws129.
[165] Löffler, M., Levine, S.M., Usai, K., Desch, S., Kandic, M., Nees, F., and Flor, H. (2022). Corticostriatal circuits in the transition to chronic back pain: The predictive role of reward learning. Cell Rep. Med. 3, 100677. https://doi.org/10.1016/j.xcrm.2022.100677.
[166] Mansour, A.R., Farmer, M.A., Baliki, M.N., and Apkarian, A.V. (2014). Chronic pain: the role of learning and brain plasticity. Restor. Neurol. Neurosci. 32, 129–139. https://doi.org/10.3233/rnn-139003.
[167] Stephan, K.E., Manjaly, Z.M., Mathys, C.D., Weber, L.A.E., Paliwal, S., Gard, T., Tittgemeyer, M., Fleming, S.M., Haker, H., Seth, A.K., and Petzschner, F.H. (2016). Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression. Front. Hum. Neurosci. 10, 550. https://doi.org/10.3389/fnhum.2016.00550.
[168] Rouault, M., Pereira, I., Galioulline, H., Fleming, S.M., Stephan, K.E., and Manjaly, Z.M. (2023). Interoceptive and metacognitive facets of fatigue in multiple sclerosis. Eur. J. Neurosci. 58, 2603–2622. https://doi.org/10.1111/ejn.16048.
[169] Cioffi, V., Mosca, L.L., Moretto, E., Ragozzino, O., Stanzione, R., Bottone, M., Maldonato, N.M., Muzii, B., and Sperandeo, R. (2022). Computational Methods in Psychotherapy: A Scoping Review. Int. J. Environ. Res. Public Health 19, 12358. https://doi.org/10.3390/ijerph191912358.
[170] Deisenhofer, A.K., Barkham, M., Beierl, E.T., Schwartz, B., Aafjes-van Doorn, K., Beevers, C.G., Berwian, I.M., Blackwell, S.E., Bockting, C.L., Brakemeier, E.L., et al. (2024). Implementing precision methods in personalizing psychological therapies: Barriers and possible ways forward. Behav. Res. Ther. 172, 104443. https://doi.org/10.1016/j.brat.2023.104443.
[171] Moutoussis, M., Shahar, N., Hauser, T.U., and Dolan, R.J. (2018). Computation in Psychotherapy, or How Computational Psychiatry Can Aid Learning-Based Psychological Therapies. Comput. Psychiatr. 2, 50–73. https://doi.org/10.1162/CPSY_a_00014.