锂金属负极由于具有超高的理论比容量(3860 mAh g-1)和极低的氧化还原电位(-3.04 V vs标准氢电极),被认为是最有前途的下一代负极材料。其中具有微相分离结构的聚合物人工固体电解质界面(SEI)非常有希望解决锂金属电池(LMBs)中天然静态SEI的不均匀性和连续开裂问题,然而由于结构中软相和硬相之间的相互干扰以及聚合物与锂金属之间的反应导致该聚合物人工SEI难以兼顾均匀导电性、力学性能和界面稳定性。
针对这一问题,西安交通大学化学学院丁书江团队开发了一种可同时实现均匀离子导电性、出色力学性能和优异界面稳定性的动态超分子离子导电聚氨酯脲界面层(DSIPI)。具有松散的Li+-O配位相互作用的软相聚四氢呋喃主链负责均匀的Li+传输,同时硬相中的超分子六重氢键通过顺序键合裂解来耗散应变能以实现优异的力学性能。此外,DSIPI中大量的TFSI-有助于在循环时原位构建更加稳定的聚合物-无机复合SEI。由此基于DSIPI保护的锂金属负极(DSIPI@Li)能够实现对称电池在20 mA cm-2的超高电流密度下具有超过4000小时的优异循环能力,这一性能与同类研究比较处于领先水平。此外,DSIPI@Li能够在LiNi0.8Co0.1Mn0.1O2正极负载量高和低N/P比的约束条件下稳定运行。这项工作为设计人工SEI和开发高性能LMB提供了有前途的策略。
上述研究成果近期以《超韧的动态超分子离子导电弹性体诱导均匀的锂离子传输和稳定界面确保无枝晶的锂金属负极》(Ultra-tough Dynamic Supramolecular Ion-conducting Elastomer Induced Uniform Li+Transport and Stabilizes Interphase Ensures Dendrite-free Lithium Metal Anodes)为题发表在国际化学领域权威期刊《德国应用化学》(Angewandte Chemie International Edition)上,西安交通大学化学学院为第一通讯单位。该论文第一作者为西安交大硕士生刘洪,通讯作者为西安交大化学学院丁书江教授、于伟副教授。该工作得到了国家自然科学基金资助,论文的表征及测试得到了西安交通大学分析测试共享中心的支持。
论文链接:
https://onlinelibrary.wiley.com/doi/10.1002/anie.202414599
(来源:西安交大 版权属原作者 谨致谢意)