DOI:10.3390/catal12101171
在这里,我们提出了一份关于通过超声波(US:600 kHz,120 W)进行氯活化的研究报告,以加强对有机污染物的声化学处理。US/氯的耦合工艺通过氯的声活化产生的活性氯物质(RCS:Cl•、ClO• 和 Cl2•-)的参与产生协同作用。与单独工艺相比,US/氯工艺显着改善了作为污染物模型的 Allura Red AC (ARAC) 纺织染料的降解。在 pH 5.5和氯剂量为250 mM 条件下,超声/氯法降解 ARAC (C0 = 5 mg·L-1) 的协同指数为 1.74。当氯浓度为 300 µM 时,协同指数增加高达 2.2。此外,协同效应仅在 pH 4-6 时获得,其中 HOCl 是唯一的含氯物种。此外,US 和氯结合对 ARAC 降解的影响在Ar氛围下提升效果,在空气中表现协同作用的,而在 N2中起到负面作用。空气气氛可以提供最好的协同作用,因为与氩气相比,它产生的活性物质浓度相对适中,与自由基-有机反应相比,它使自由基-自由基反应被抑制。最后,US/氯工艺对于低污染物浓度(C0 ≤ 10 mg·L-1)更具协同作用;耦合效应对于中等浓度(C0~20-30 mg·L-1)是相加的,对于较高的C0(>30 mg·L-1)是负的。因此,US/氯工艺在典型的水处理条件下是有效的,尽管仍然需要完整的副产物分析和毒性评估来确定工艺可行性。
Figure 1. Chlorine sonolysis at pH 5 (a) and 9 (b) (conditions: [chlorine]0 = 250 µM, V = 150 mL, temperature: 25 ± 1 °C, frequency: 600 kHz, power: 120 W).
Figure 2. ARAC degradation kinetics via chlorine, ultrasound (US) and US/chlorine processes (conditions: C0 = 5 mg·L−1 (10 µM), [chlorine]0 = 250 µM, V = 150 mL, pH 5.5, temperature: 25 ± 1 °C, frequency: 600 kHz, power: 120 W).
Figure 3. Changes in UV-Vis spectrums during the treatment of ARAC via ultrasound (US) (a) and US/chlorine (b) processes (conditions: C0 = 5 mg·L−1 (10 µM), [chlorine]0 = 250 µM, V = 150 mL, pH 5.5, temperature: 25 ± 1 °C, frequency: 600 kHz, power: 120 W)
Figure 4. Effect of initial chlorine concentration on the sonochemical degradation of ARAC (a) (conditions: C0 = 5 mg·L−1 (10 µM), [chlorine]0 = 50–300 µM, V = 150 mL, pH 5.5, temperature: 25 ± 1 °C, frequency: 600 kHz, power: 120 W) and variation in initial ARAC removal rate (r0) with respect to [chlorine]0 for chlorination alone, US alone and US/chlorine combination (b) (the sum of the two processes separately, US + chlorine, was added for comparison with the combined process).
Figure 5. Effect of initial solution pH on the performance of US (a) and US/chlorine (b) processes toward the removal kinetics of ARAC (conditions: C0 = 5 mg·L−1 (10 µM), [chlorine]0 = 250 µM, V = 150 mL, pH 1–10, temperature: 25 ± 1 °C, frequency: 600 kHz, power: 120 W) and variation in ARAC initial removal rate (r0) with respect to initial solution pH for chlorination alone, US alone and US/chlorine combination (c) (the sum of the two processes separately, US + chlorine, was added for comparison with the combined process).
Figure 6. Effect of saturation gases on the performance of US (a) and US/chlorine (b) processes toward the removal kinetics of ARAC (conditions: C0 = 5 mg·L−1 (10 µM), [chlorine]0 = 250 µM, V = 150 mL, pH 5.5, temperature: 25 ± 1 °C, frequency: 600 kHz, power: 120 W) and variation in ARAC initial removal rate (r0) with respect to saturating gas for chlorination alone, US alone and US/chlorine combination (c) (the sum of the two processes separately, US + chlorine, was added for comparison with the combined process).
根据获得的结果,可以得出结论,在典型的水处理条件下,超声/氯工艺可能更适合快速消除持久性有机污染物。该工艺可以产生活性氯物种,即通过氯的超声化学活化,大大提高了污染物的降解率。在pH值为5.5和[Cl]0=250mM的情况下,通过US/氯工艺降解ARAC(C0=5mg-L-1)的协同指数为1.74。协同效应指数随着初始氯气剂量的增加而增加,但没有观察到最佳状态。没有最佳状态的原因是没有达到所需的氯浓度,而该浓度会削弱氯对RCS生成和使用的有利影响。此外,只有在pH值为4-6时才能获得协同效应,其中HOCl是唯一的氯物种。在pH值为8-10时,超声和氯的综合效应是相加的。对于低浓度的染料(C0≤10 mg-L-1),超声/氯工艺更具有协同作用;对于中等浓度的染料(C0~30 mg-L-1),耦合效应是相加的,对于较高浓度的染料(>30 mg-L-1),耦合效应是负的。
超声/氯工艺可以作为一种新型的AOP参与到废水处理中,尽管还需要一些具体的分析。虽然目前工作的主要目标是探索在污染物去除方面的工艺性能,但为了完整起见,将进行进一步的调查,评估以下问题:
TOC、BOD5和毒性的演变。
自由基的识别和对整体降解率的贡献。
处理条件(如pH值、温度、氯和污染物浓度)对自由基物种的影响。
对可能形成有毒的三卤甲烷等降解副产物的鉴定。
ARAC降解的反应机制和模式。
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!