👉 这是一个或许对你有用的社群
🐱 一对一交流/面试小册/简历优化/求职解惑,欢迎加入「芋道快速开发平台」知识星球。下面是星球提供的部分资料:
《项目实战(视频)》:从书中学,往事中“练” 《互联网高频面试题》:面朝简历学习,春暖花开 《架构 x 系统设计》:摧枯拉朽,掌控面试高频场景题 《精进 Java 学习指南》:系统学习,互联网主流技术栈 《必读 Java 源码专栏》:知其然,知其所以然
👉这是一个或许对你有用的开源项目
国产 Star 破 10w+ 的开源项目,前端包括管理后台 + 微信小程序,后端支持单体和微服务架构。
功能涵盖 RBAC 权限、SaaS 多租户、数据权限、商城、支付、工作流、大屏报表、微信公众号等等功能:
Boot 仓库:https://gitee.com/zhijiantianya/ruoyi-vue-pro Cloud 仓库:https://gitee.com/zhijiantianya/yudao-cloud 视频教程:https://doc.iocoder.cn 【国内首批】支持 JDK 21 + SpringBoot 3.2.2、JDK 8 + Spring Boot 2.7.18 双版本
来源:juejin.cn/post/
7268663683881828413
背景
随着越来越多的公司拥抱云原生,从原先的单体应用演变为微服务,应用的部署方式也从虚机变为容器化,容器编排组件k8s也成为大多数公司的标配。然而在容器化以后,我们发现应用的性能比原先在虚拟机上表现更差,这是为什么呢?
基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
项目地址:https://github.com/YunaiV/ruoyi-vue-pro 视频教程:https://doc.iocoder.cn/video/
压测结果
容器化之前的表现
应用部署在虚拟机下,我们使用wrk工具进行压测,压测结果如下:
从压测结果看,平均RT为1.68ms,qps为716/s,我们再来看下机器的资源使用情况,cpu 基本已经被打满。
容器化后的表现
使用wrk工具进行压测,结果如下:
从压测结果看,平均RT为2.11ms,qps为554/s,我们再来看下机器的资源使用情况,cpu基本已经被打满。
性能对比结果
性能对比 | 虚拟机 | 容器 |
---|---|---|
RT | 1.68ms | 2.11ms |
QPS | 716/s | 554/s |
❝
「总体性能下降:RT(25%)、QPS(29%)」
❞
基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
项目地址:https://github.com/YunaiV/yudao-cloud 视频教程:https://doc.iocoder.cn/video/
原因分析
架构差异
由于应用在容器化后整体架构的不同、访问路径的不同,将可能导致应用容器化后性能的下降,于是我们先来分析下两者架构的区别。我们使用k8s作为容器编排基础设施,网络插件使用calico的ipip模式,整体架构如下所示。
这里需要说明,虽然使用calico的ipip模式,由于pod的访问为service的nodePort模式,所以不会走tunl0网卡,而是从eth0经过iptables后,通过路由到calico的calixxx接口,最后到pod。
性能分析
在上面压测结果的图中,我们容器化后,cpu的软中断si使用率明显高于原先虚拟机的si使用率,所以我们使用perf继续分析下热点函数。
为了进一步验证是否是软中断的影响,我们使用perf进一步统计软中断的次数。
❝
「我们发现容器化后比原先软中断多了14%,到这里,我们能基本得出结论,应用容器化以后,需要更多的软中断的网络通信导致了性能的下降。」
❞
软中断原因
由于容器化后,容器和宿主机在不同的网络namespace,数据需要在容器的namespace和host namespace之间相互通信,使得不同namespace的两个虚拟设备相互通信的一对设备为veth pair,可以使用ip link命令创建,对应上面架构图中红色框内的两个设备,也就是calico创建的calixxx和容器内的eth0。我们再来看下veth设备发送数据的过程
static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
{
...
if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp)
...
}
static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
struct veth_rq *rq, bool xdp)
{
return __dev_forward_skb(dev, skb) ?: xdp ?
veth_xdp_rx(rq, skb) :
netif_rx(skb);//中断处理
}
/* Called with irq disabled */
static inline void ____napi_schedule(struct softnet_data *sd,
struct napi_struct *napi)
{
list_add_tail(&napi->poll_list, &sd->poll_list);
//发起软中断
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
}
通过虚拟的 veth 发送数据和真实的物理接口没有区别,都需要完整的走一遍内核协议栈,从代码分析调用链路为 veth_xmit -> veth_forward_skb -> netif_rx -> __raise_softirq_irqoff,「veth的数据发送接收最后会使用软中断的方式,这也刚好解释了容器化以后为什么会有更多的软中断,也找到了性能下降的原因。」
优化策略
原来我们使用calico的ipip模式,它是一种overlay的网络方案,容器和宿主机之间通过veth pair进行通信存在性能损耗,虽然calico可以通过BGP,在三层通过路由的方式实现underlay的网络通信,但还是不能避免veth pari带来的性能损耗,针对性能敏感的应用,那么有没有其他underly的网络方案来保障网络性能呢?那就是macvlan/ipvlan模式,我们以ipvlan为例稍微展开讲讲。
ipvlan L2 模式
IPvlan和传统Linux网桥隔离的技术方案有些区别,它直接使用linux以太网的接口或子接口相关联,这样使得整个发送路径变短,并且没有软中断的影响,从而性能更优。如下图所示:
上图是ipvlan L2模式的通信模型,可以看出container直接使用host eth0发送数据,可以有效减小发送路径,提升发送性能。
ipvlan L3 模式
ipvlan L3模式,宿主机充当路由器的角色,实现容器跨网段的访问,如下图所示:
Cilium
除了使用macvlan/ipvlan提升网络性能外,我们还可以使用Cilium来提升性能,Cilium为云原生提供了网络、可观测性、网络安全等解决方案,同时它是一个高性能的网络CNI插件,高性能的原因是优化了数据发送的路径,减少了iptables开销,如下图所示:
虽然calico也支持ebpf,但是通过benchmark的对比,Cilium性能更好,高性能名副其实,接下来我们来看看官网公布的一些benchmark的数据,我们只取其中一部分来分析,如下图:
无论从 QPS 和 CPU 使用率上 Cilium 都拥有更强的性能。
总结
容器化带来了敏捷、效率、资源利用率的提升、环境的一致性等等优点的同时,也使得整体的系统复杂度提升一个等级,特别是网络问题,容器化使得整个数据发送路径变长,排查难度增大。不过现在很多网络插件也提供了很多可观测性的能力,帮助我们定位问题。
我们还是需要从实际业务场景出发,针对容器化后性能、安全、问题排查难度增大等问题,通过优化架构,增强基础设施建设才能让我们在云原生的路上越走越远。
最后,感谢大家观看,也希望和我讨论云原生过程中遇到的问题。
欢迎加入我的知识星球,全面提升技术能力。
👉 加入方式,“长按”或“扫描”下方二维码噢:
星球的内容包括:项目实战、面试招聘、源码解析、学习路线。
文章有帮助的话,在看,转发吧。
谢谢支持哟 (*^__^*)