内容导读
1、HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用培训班
2、2024最新R语言结构方程模型(SEM)在生态学领域中的实践应用培训班
3、2025年国自然基金项目撰写技巧与ChatGPT融合应用培训班
4、双碳目标下DNDC模型建模方法及在土壤碳储量、温室气体排放、农田减排、土地变化、气候变化中的实践技术应用培训班
5、AI赋能R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表"培训班
6、【高分论文密码】AI赋能大尺度空间模拟与不确定性分析及数字制图高级研修班
7、流域碳中和实践技术高级培训班
微信咨询:杨老师 15383229128 微信同号
2024最新R语言结构方程模型(SEM)在生态学领域中的实践应用培训班
结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。然而,自Wright在1920年美国科学院院刊(PNAS)提出第一个结构方程模型(路径分析,Path Analysis)至今的100多年时间里,结构方程模型已发展出有较为庞大的理论体系和复杂多变的形式,使初学者往往无所适从。课程将利用开源软件R平台,以生态学领域研究问题为主线,如生物多样性、物种分布、生物入侵、生物地理格局、生物多样性与生态系统功能(BEF)、生态恢复、气候变化对物种分布影响等,通过理论讲解和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程,使学员能够利用结构方程模型方法解决实际研究和工作中遇到的相关科学问题。课程筛选大量应用结构方程模型的经典案例,这些案例来自Nature、Ecology、Ecological Applications、Ecology Letters、Journal of Ecology、Methods in Ecology and Evolution、Oikos、Ecography等主流期刊,多数案例为近期发表成果,具有很大的参考和借鉴价值。课程包括R语言入门、结构方程模型原理介绍、结构方程模型分析入门及高阶应用、潜变量分析、复合变量分析及贝叶斯结构方程模型参数估计。课程将利用lavaan,piecewiseSEM,blavaan及brms程序包分别从全局估计、局域估计及相应贝叶斯估计方法实现结构方程模型分析。课程即适合R语言和结构方程模型的初学者,也适合对结构方程模型有高阶应用需求的研究生和科研人员。课程分为8个专题(含2个视频专题),计划授课6个晚上,具体如下:
教学特色
2、技巧方法讲解,提供课程配套的完整教材数据及提供长期回放;
发票证书
参加培训的学员可以获得《结构方程模型技术应用》专业技术证书及学时证明,网上可查。此证书可作为学时证明、个人学习和知识更新、单位在职人员专业技能素质培养及单位人才聘用重要参考依据。
授课内容
夯实基础:专题1:R/Rstudio简介及入门【课前学习、提供学习资料】
1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储
夯实基础:专题2:结构方程模型(SEM)介绍【课前学习、提供学习视频资料】
1)SEM的定义、生态学领域应用及历史回顾
2)SEM的基本结构
3)SEM的估计方法
4)SEM的路径规则
5)SEM路径参数的含义
6)SEM分析样本量及模型可识别规则
7)SEM构建基本流程
专题3:R语言SEM分析入门:lavaan VS piecewiseSEM
1)结构方程模型在生态学研究中的应用介绍及模型要点回顾
2)结构方模型估计方法:局域估计和全局估计的基本工作原理、主要区别及应用情景分析
3)案例群落物种丰富度恢复的直接及间接效应(direct and indirect effects):SEM分析基本流程-lavaan vs piecwiseSEM
(1)模型建立
(2)模型拟合
(3)模型评估
(4)结果展示
课后练习:1.根据元模型(meta-model)构建模型
2.火烧干扰后植物群落恢复直接、间接及调节效应分析
专题4:SEM全局估计(lavaan)在生态学领域高阶应用
案例1:湿地生态系统初级生产力的直接和间接效应分析
(1)问题提出、元模型构建
(2)模型构建及模型估计
(3)模型评估:路径增加和删减原则、最优模型筛选方法
(4)结果表达
案例2:火烧干扰后植物群落恢复效果评估-数据缺失和正态性不足数据处理-
案例3:放牧对海拔与生物量关系的影响分析-数据分组分析
案例4:农业用地比例对河口水草多度影响-数据分层/嵌套分析
课后练习:环境异质性和资源可获得性对不同演替阶段林下维管植物多样性的影响
专题5:SEM潜变量分析在生态学领域应用
1)潜变量的定义、优势及应用背景分析
2)潜变量分析实现基本原理
3)案例1:海岸带米草群落生态恢复表现评估-单潜变量模型构建
4)案例2:城市景观中土地利用对有花植物资源和访花昆虫的直接与间接影响-多个潜变量模型构建
课后练习案例:植物多样性、能量梯度及环境梯度对动物多样性格局的影响-构建动物多样性潜变量
专题6:SEM复合变量分析在生态学领域应用
1)复合变量的定义及在生态学领域应用情景分析
2)复合变量分析实现途径
3)案例1:生态力与生物多样性形成机制分析-土壤理化因子的多复合变量构建
4)案例2:火烧后植被恢复对物种丰富度影响-复合变量解决非线性问题
5)案例3:气候暖化、海平面上升对湿地植物群落的复合影响-复合变量解决交互作用问题
课后实例讲解:植物群落物种多样性是否会提高其对入侵植物的抵抗力-多复合变量实现
专题7:局域估计SEM -piecewiseSEM及生态学领域高阶应用
1)piecewiseSEM对内生变量为二项及泊松分布数据的分析
2)混合效应模型+时间自相关问题:气候波动对海草床生态系统食物网结构影响
3)空间自相关问题:NDVI空间变化与气候和多样性关系
4)系统发育相关问题:物种属性、社会性进化特征对海虾领域范围和多度影响-
5)分组数据、交互作用、非线性关系问题分析(实例数据同专题4和6)
课后练习案例:人类活动、环境条件、物种属性对动物领域大小相对贡献-分组分析和分类变量处理
专题8:贝叶斯SEM在生态学领域应用
1)贝叶斯(bayes)方法简介
2)R语言贝叶斯SEM实现程序包blavaan和brms介绍
3)案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan)
4)案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)
课后练习案例:生物地理历史因素对北半球森林的初级生产力的影响(brms)
报名方式
请微信咨询:15383229128 微信同号
其它相关课程
其它相关课程
声明: 本号旨在传播、传递、交流,对相关文章内容观点保持中立态度。涉及内容如有侵权或其他问题,请与本号联系,第一时间做出撤回。
Ai尚研修丨专注科研领域
技术推广,人才招聘推荐,科研活动服务
科研技术云导师,Easy Scientific Research