第一作者:Xiaoqing Lin
通讯作者:吴德礼 教授
通讯单位:同济大学环境科学与工程学院
DOI:10.1016/j.jhazmat.2022.130190
Fig. 1. The schematic diagram of the ozone oxidation experimental setup.
Fig. 2. Respective decays of ID, 3-ID, IAA, DMA, TMA, H2S, MT, DMS, and DMDS in the O3 alone and Cu(II)/O3 processes (a); DMA decay and O3 consumption in different pH values (b, d) and Cu(II) dosage (c, e). Experimental conditions: pH = 7.7, [Cu(II)]0 = 10 μM, [ID]0 = [3-ID]0 = [IAA]0 = [DMA]0 = [TMA]0 = [H2S]0 = [MT]0 = [DMS]0 = [DMDS]0 = 0.2 mM for (a); [Cu(II)]0 = 10 μM, [DMA]0 = 0.3 mM for (a, c); pH = 7.7, [DMA]0 = 0.3 mM for (b, d).
Fig. 3. Interactive effects between Cu(II) dosage and ozone dosage (pH = 5.5) (a), Cu(II) dosage and ozone dosage (pH = 7.7) (b), Cu(II) dosage and ozone dosage (pH = 9.3) (c), pH and ozone dosage (Cu(II) dosage = 0 μM) (d), pH and ozone dosage (Cu(II) dosage = 5 μM) (e), pH and ozone dosage (Cu(II) dosage = 10 μM) (f), pH and Cu(II) dosage (ozone dosage = 16 μM) (g), pH and Cu(II) dosage (ozone dosage = 32 μM) (h), pH and Cu(II) dosage (ozone dosage = 64 μM) (i) with the 2D response surfaces for ozone utilization in the Cu(II)/O3 process.
Fig. 4. XRD pattern of reaction products (a), the morphological distribution of Cu(II) under different pH conditions using MINTEQ software (b), comparison of the effect of CuO or Cu(II) addition on DMA decay by ozone (c), recycling performance of Cu(II) (d). Experimental conditions: [Cu(II)]0 = 10 μM for (a); pH = 7.7, [Cu(II)]0 = 10 μM, [DMA]0 = 0.2 mM for (b); pH = 7.7, [O3]0 = 32 μM, [DMA]0 = 0.3 mM for (c); pH = 7.7, [Cu(II)]0 = 10 μM, [DMA]0 = 2.0 μM, [DMA]i = 1.0 μM, [O3]i = 3.2 μM for (d).
Fig. 5. ESR spectra for the detection of the DMPO-O2•– adduct (a), H2O2 production (b), •OH production (c), and CHCl3 quenching experiments (d) in the absence or the presence of Cu(II). Experimental conditions: pH = 7.7, [Cu(II)]0 = 20 μM for (a); pH = 7.7, [Cu(II)]0 = 10 μM for (b); pH = 7.7, [Cu(II)]0 = 10 μM, [TBA]= 50 mM for (c); pH = 7.7, [Cu(II)]0 = 10 μM, [DMA]0 = 20 μM, [CHCl3] = 2.0 mM, reaction time = 20 min for (d).
Fig. 6. Decay of complex malodorous compounds (ID, 3-ID, DMA, TMA, H2S, MT, DMS, and DMDS) in the O3 alone (a) and Cu(II)/O3 process (b), and conversion of nitrogen (c) and sulfur (d) during ozone oxidation. Experimental conditions: pH = 7.7, [Cu(II)]0 = 0 or 10 μM, [ID]0 = [3-ID]0 = [IAA]0 = [DMA]0 = [TMA]0 = [H2S]0 = [MT]0 = [DMS]0 = [DMDS]0 = 0.1 mM.
在这项研究中,由性能实验、相互作用实验、ESR光谱和淬火实验组成的综合分析证实,微量Cu(II)可以抑制自由基的形成,促进DMA的衰减,这归因于臭氧的直接氧化。此外,Cu(II)的用量是决定性因素,用响应面方法研究初始pH值、Cu(II)用量和臭氧用量之间的交互影响。对反应性物种的分析表明,Cu(II)可以改变臭氧分解的连锁反应,导致-OH的产生减少,从而降低了臭氧的无效分解。溶液中的Cu(OH)2与臭氧氧化过程中产生的H2O2反应,最终产生CuO固体,有利于回收。同时,加入微量Cu(II)后,对复杂的恶臭污染物也有良好的表现,每种恶臭污染物之间的竞争取决于它们与臭氧的反应性。加入Cu(II)后,明显促进了含氮恶臭污染物的氮的定向矿化,变成NO3-N,而不是NH3-N。虽然对含硫恶臭污染物的硫的矿化没有明显影响,但臭氧产物的气味特征消失了,极性明显增强,在避免二次污染的同时,增加了污染物在水中的溶解度。
Lin, X.; Ma, C.; Wu, D. New Insight into the Enhanced Ozonation of Malodorous Compounds by Cu(II): Inhibiting the Formation of Free Radicals to Promote Ozone Utilization. Journal of Hazardous Materials 2023, 443, 130190. https://doi.org/10.1016/j.jhazmat.2022.130190.
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!