在本研究中,华中科技大学姚永刚教授、宋波教授&中国科学院宁波材料技术与工程研究所黄庆教授等人在《Advanced Functional Materials》期刊上发表了题为“Transient and in situ Growth of Nanostructured SiC on Carbon Fibers toward Highly Durable Catalysis”的论文。本文提出了一种冲击波型瞬态加热技术,通过设计超过1750°C的高温脉冲(每脉冲持续1秒)来控制性地在碳纤维上生长共形SiC涂层和大量SiC纳米线(记作CF/SiC-NW),为苛刻环境下的催化反应提供了高比表面积和持久的支撑。瞬态加热过程中,SiO蒸气触发了碳表面向无缝SiC保护层的原位转变,随后的快速冷却对自组装SiC纳米线的生长至关重要。CF/SiC-NW在高温空气中、经过2000次电化学应力后的浓酸/碱溶液中,以及连续操作10小时的氧气发生反应中,都展现出了卓越的结构稳定性。这一策略不仅实现了难熔碳化物的精细结构控制,而且对于各种碳/碳化物功能材料(例如C/TiC、C/WC)在苛刻条件下的电催化或电气催化具有普适性。相关文章以“Transient and in situ Growth of Nanostructured SiC on Carbon Fibers toward Highly Durable Catalysis”为题发表在《Advanced Functional Materials》期刊上。
文献信息:Hao Zhang; Qin Ouyang; Lanlan Yu; Rong Hu; Jun Wan; Bo Song; Qing Huang; Yonggang Yao. Transient and in situ Growth of Nanostructured SiC on Carbon Fibers toward Highly Durable Catalysis. Advanced Functional Materials., 2023.
DOI: 10.1002/adfm.202301375
超快高温焦耳热冲击技术推广
马弗炉、管式炉升温装置VS焦耳热升温装置
向上滑动阅览
Ultrarapid Nanomanufacturing of High‐Quality Bimetallic Anode Library toward Stable Potassium‐Ion Storage. Angewandte Chemie., 2023. DOI: 10.1002/anie.202303600
Ultrafast Non-Equilibrium Phase Transition Induced Twin Boundaries of Spinel Lithium Manganate, Advanced Energy Materials 2023. DOI: 10.1002/aenm.202302484
High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis. Chinese Journal of Catalysis, 2023. DIO: https://doi.org/10.1016/S1872-2067(23)64428-6.
Rapid High-Temperature Liquid Shock Synthesis of High-Entropy Alloys for Hydrogen Evolution Reaction. ACS nano., 2024. DOI: 10.1021/acsnano.3c07703
Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock. Nano Letter 2016, 16 (9), 5553-5558. DOI:10. 1021/acs.nanolett.6b02096.
High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications. Advanced Energy Materials 2020, 10 (33), DOI: 10. 1002/aenm.202001331.
公司官网:
https://www.zhongkejingyan.com.cn/
仪器信息网:
https://www.instrument.com.cn/netshow/SH118239/