结构疲劳寿命计算中的Miner损伤准则

文摘   科技   2024-05-22 08:56   吉林  
疲劳问题最早在19世纪初提出。德国工程师Wöhler通过对疲劳损伤问题进行系统的研究,提出了疲劳寿命与循环应力的关系,并确定应力幅是疲劳破坏的决定因素。在1871年,他提出了利用应力-寿命(S-N)曲线来分析疲劳问题的方法,为工程结构疲劳的研究奠定了理论基础。
零件的疲劳损伤是一个复杂的过程。通常可以分为三个阶段:
·   裂纹初始;
·   裂纹扩展;
·   断裂失效。
对于外形和材料分布比较均匀的零部件来说,局部变形通常是从表面应力集中区域开始。随着加载循环次数的增加,零件的裂纹长度随之增加。达到一定循环次数之后,裂纹将导致零件失效。
在基于有限元方法计算结构的寿命中,用户需要准备有限元结果,载荷谱,材料疲劳性能曲线(SN或EN曲线),还需要引入一个计算结构疲劳损伤的准则。

疲劳损伤理论可归结为两个大类:线性损伤理论和非线性损伤理论。其中线性损失理论主要是Miner准则、修正Miner 法则及相对Miner 法则,非线性损伤累积理论主要有Manson 双线性累积理论、Corten-Dolan理论等。虽然Miner损伤准则不能考虑疲劳载荷的先后顺序,但是由于产品的疲劳寿命具有一定的分散性,而线性损伤计算方法可以基本反应出结构寿命的中位水平,此外该方法处理数据也较为方法,因此是目前工程中的一种常用方法,


线性累积损伤理论是当前预测疲劳寿命的重要工具。假设车辆在某段实际运行载荷中,某载荷幅值出现的次数为n1,其零件S-N曲线中,同载荷幅值对应的循环次数为N1,则这段运行信号中这种载荷对零件的损伤D= n1/N1。以此为基础,零件在应力水平Si下作用ni次循环下的损伤为Di=ni/Ni,若在k个应力水平Si作用下,各经受ni次循环,则可定义其总损伤为

当D=1,即损伤值进行相加求和等于1时,就可认为零部件出现了失效。


计算损伤的范例:

ANSYS空间
详细介绍ansys结构、流体(fluent)、声学、传热、疲劳、断裂、优化设计及多场耦合的理论与工程应用方法,实现仿真驱动设计,助力产品创新。
 最新文章